Anti-synchronization of Time-delayed Chaotic Neural Networks Based on Adaptive Control

Article

Abstract

This paper investigates the adaptive anti-synchronization problem for time-delayed chaotic neural networks with unknown parameters. Based on Lyapunov-Krasovskii stability theory and linear matrix inequality (LMI) approach, the adaptive anti-synchronization controller is designed and an analytic expression of the controller with its adaptive laws of unknown parameters is shown. The proposed controller can be obtained by solving the LMI problem. An illustrative example is given to demonstrate the effectiveness of the proposed method.

Keywords

Anti-synchronization Delayed chaotic neural networks Adaptive control Linear matrix inequality (LMI) Lyapunov-Krasovskii stability theory 

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1996) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Chen, G., Dong, X.: From Chaos to Order. World Scientific, Singapore (1998) MATHGoogle Scholar
  3. 3.
    Zhang, Y., Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation. Phys. Lett. A 330, 442–447 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., Park, Y.J.: Anti-synchronization of chaotic oscillators. Phys. Lett. A 320, 39–49 (2003) MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Li, C., Liao, X.: Anti-synchronization of a class of coupled chaotic systems via linear feedback control. Int. J. Bifurc. Chaos 16, 1041–1047 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Idowu, B.A., Vincent, U.E., Njah, A.N.: Anti-synchronization of chaos in nonlinear gyros via active control. J. Math. Control Sci. Appl. 1, 191–200 (2007) Google Scholar
  7. 7.
    Vincent, U.E., Laoye, J.A.: Synchronization, anti-synchronization and current transport in non-identical chaotic ratchets. Physica A 384, 230–240 (2007) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Al-sawalha, M.M., Noorania, M.S.M.: On anti-synchronization of chaotic systems via nonlinear control. Chaos Solitons Fractals 42, 170–179 (2009) CrossRefGoogle Scholar
  9. 9.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977) CrossRefADSGoogle Scholar
  10. 10.
    Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 366–393 (1982) MathSciNetADSGoogle Scholar
  11. 11.
    Lu, H.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2002) MATHCrossRefADSGoogle Scholar
  12. 12.
    Park, J.H., Kwon, O.M.: Guaranteed cost control of time-delay chaotic systems. Chaos Solitons Fractals 27, 1011–1018 (2006) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen, B., Liu, X., Tong, S.: Guaranteed cost control of time-delay chaotic systems via memoryless state feedback. Chaos Solitons Fractals 34, 1683–1688 (2007) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guan, X., Feng, G., Chen, C., Chen, G.: A full delayed feedback controller design method for time-delay chaotic systems. Physica D 227, 36–42 (2007) MATHMathSciNetADSGoogle Scholar
  15. 15.
    Chen, M., Chen, W.H.: Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos Solitons Fractals 41, 2716–2724 (2009) CrossRefGoogle Scholar
  16. 16.
    Zhu, W., Xu, D., Huang, Y.: Global impulsive exponential synchronization of time-delayed chaotic systems. Chaos Solitons Fractals 35, 904–912 (2008) MATHCrossRefGoogle Scholar
  17. 17.
    Liu, X.: Impulsive synchronization of chaotic systems subject to time delay. Nonlinear Anal. Theory Methods Appl. (2009). doi:10.1016/j.na.2009.01.162 Google Scholar
  18. 18.
    Wang, Y., Guan, Z.H., Wang, H.O.: Feedback an adaptive control for the synchronization of Chen system via a single variable. Phys. Lett. A 312, 34–40 (2003) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Park, J.H.: Adaptive synchronization of a unified chaotic systems with an uncertain parameter. Int. J. Nonlinear Sci. Numer. Simul. 6, 201–206 (2005) Google Scholar
  20. 20.
    Yassen, M.T.: Adaptive synchronization of two different uncertain chaotic systems. Phys. Lett. A 337, 335–341 (2005) MATHCrossRefADSGoogle Scholar
  21. 21.
    Li, S., Xu, W., Li, R.: Synchronization of two different chaotic systems with unknown parameters. Phys. Lett. A 361, 98–102 (2007) MATHCrossRefADSGoogle Scholar
  22. 22.
    Guo, R.: A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A 372, 5593–5597 (2008) CrossRefADSGoogle Scholar
  23. 23.
    Wang, Z.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 14, 2366–2372 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Al-sawalha, M.M., Noorani, M.S.M.: Anti-synchronization of chaotic systems with uncertain parameters via adaptive control. Phys. Lett. A 373, 2852–2857 (2009) CrossRefADSGoogle Scholar
  25. 25.
    Krasovskii, N.N.: Application of Lyapunov’s second method for equations with time delay. Prikl. Mat. Mek. 20, 315–327 (1956) MathSciNetGoogle Scholar
  26. 26.
    Kolmanovskii, V., Nosov, A.: Stability of Functional Differential Equations. Academic Press, San Diego (1986) MATHGoogle Scholar
  27. 27.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishinan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994) Google Scholar
  28. 28.
    Noldus, E.: Stabilization of a class of distributional convolutional equations. Int. J. Control 41, 947–960 (1985) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Mathworks Inc., Natick (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Electronic and Control EngineeringWonkwang UniversityIksanKorea

Personalised recommendations