International Journal of Theoretical Physics

, Volume 48, Issue 11, pp 3278–3286 | Cite as

On the Zero-Energy Universe

Article

Abstract

We consider the energy of the Universe, from the pseudo-tensor point of view (Berman, M.Sc. thesis, 1981). We find zero values, when the calculations are well-done. The doubts concerning this subject are clarified, with the novel idea that the justification for the calculation lies in the association of the equivalence principle, with the nature of co-motional observers, as demanded in Cosmology. In Sect. 4, we give a novel calculation for the zero-total energy result.

Keywords

Pseudotensors General relativity Energy Pseudoquadrimomentum Cosmology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity, 2nd edn. McGraw-Hill, New York (1975) Google Scholar
  2. 2.
    Albrow, M.G.: Nature 241, 56 (1973) ADSGoogle Scholar
  3. 3.
    Banerjee, N., Sen, S.: Pramana J. Phys. 49, 609 (1997) CrossRefADSGoogle Scholar
  4. 4.
    Berman, M.S.: M.Sc. thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil. Available online, through the federal government site www.sophia.bibl.ita.br/biblioteca/index.html (supply author’s surname and keyword may be “pseudotensor” or “Einstein” (1981, unpublished)
  5. 5.
    Berman, M.S.: In: Kreitler, P.V. (ed.) Trends in Black Hole Research. Nova Science, New York (2006), Chap. 5 Google Scholar
  6. 6.
    Berman, M.S.: In: Kreitler, P.V. (ed.) New Developments in Black Hole Research. Nova Science, New York (2006), Chap. 5 Google Scholar
  7. 7.
    Berman, M.S.: Introduction to General Relativity and the Cosmological Constant Problem. Nova Science, New York (2007) Google Scholar
  8. 8.
    Berman, M.S.: Introduction to General Relativistic and Scalar Tensor Cosmologies. Nova Science, New York (2007) Google Scholar
  9. 9.
    Berman, M.S.: Astrophys. Space Sci. 312, 275 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Berman, M.S.: Rev. Mex. Astron. Astrofís. 43, 297–301 (2007) ADSGoogle Scholar
  11. 11.
    Berman, M.S.: Astrophys. Space Sci. 311, 359 (2007) CrossRefADSGoogle Scholar
  12. 12.
    Berman, M.S.: A Primer in Black Holes, Mach’s Principle and Gravitational Energy. Nova Science, New York (2008) MATHGoogle Scholar
  13. 13.
    Berman, M.S.: A general relativistic rotating evolutionary universe. Astrophys. Space Sci. 314, 319–321 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Berman, M.S.: A general relativistic rotating evolutionary universe, part II. Astrophys. Space Sci. 315, 367–369 (2008) CrossRefADSGoogle Scholar
  15. 15.
    Berman, M.S.: General relativistic singularity-free cosmological model. Astrophys. Space Sci. 321, 157–160 (2009) CrossRefADSGoogle Scholar
  16. 16.
    Carmeli, M., Leibowitz, E., Nissani, N.: Gravitation: SL(2,C) Gauge Theory and Conservation Laws. World Scientific, Singapore (1990) Google Scholar
  17. 17.
    Cooperstock, F.I.: Gen. Relativ. Gravit. 26, 323 (1994) CrossRefADSGoogle Scholar
  18. 18.
    Cooperstock, F.I., Israelit, M.: Found. Phys. 25, 631 (1995) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Cooperstock, F.I., Faraoni, V.: Astrophys. J. 587, 483 (2003) CrossRefADSGoogle Scholar
  20. 20.
    Feng, S., Duan, Y.: Chin. Phys. Lett. 13, 409 (1996) CrossRefADSGoogle Scholar
  21. 21.
    Feynman, R.P.: Lectures on Gravitation. Addison-Wesley, Reading (1962) Google Scholar
  22. 22.
    Freud, P.H.: Ann. Math. 40, 417 (1939) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Garecki, J.: Gen. Relativ. Gravit. 27, 55 (1995) MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Guth, A.: Phys. Rev. D 23, 347 (1981) CrossRefADSGoogle Scholar
  25. 25.
    Hawking, S.: The Universe in a Nutshell. Bantam, New York (2001) Google Scholar
  26. 26.
    Johri, V.B., et al.: Gen. Relativ. Gravit. 27, 313 (1995) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Katz, J.: Class. Quantum Gravity 2, 423 (1985) CrossRefADSGoogle Scholar
  28. 28.
    Katz, J.: Private communication (2006) Google Scholar
  29. 29.
    Katz, J., Ori, A.: Class. Quantum Gravity 7, 787 (1990) CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Katz, J., Bicak, J., Lynden-Bell, D.: Phys. Rev. D 55, 5957 (1997) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Landau, L., Lifshitz, E.: The Classical Theory of Fields, 4th revised edn. Pergamon, Oxford (1975) Google Scholar
  32. 32.
    Radinschi, I.: Acta Phys. Slov. 49, 789 (1999). gr-qc/0008034 ADSGoogle Scholar
  33. 33.
    Rosen, N.: Gen. Relativ. Gravit. 26, 319 (1994) CrossRefADSGoogle Scholar
  34. 34.
    Rosen, N.: Gen. Relativ. Gravit. 27, 313 (1995) CrossRefGoogle Scholar
  35. 35.
    Sciama, D.N.: Mon. Not. R. Astron. Soc. 113, 34 (1953) MATHADSMathSciNetGoogle Scholar
  36. 36.
    So, L.L., Vargas, T.: gr-qc/0611012 (2006)
  37. 37.
    Tryon, E.P.: Nature 246, 396 (1973) CrossRefADSGoogle Scholar
  38. 38.
    Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972) Google Scholar
  39. 39.
    Xulu, S.: Int. J. Theor. Phys. 39, 1153 (2000). gr-qc/9910015 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    York, J.W. Jr.: Energy and momentum of the gravitational field. In: Tipler, F.J. (ed.) A Festschrift for Abraham Taub. Academic Press, New York (1980) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instituto Albert Einstein/LatinamericaCuritibaBrazil

Personalised recommendations