Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 8, pp 2214–2221 | Cite as

Bianchi-I Cosmologies with Electromagnetic and Spinor Fields. Isotropization Problem

  • K. A. Bronnikov
  • E. N. Chudaeva
  • G. N. Shikin
Article

Abstract

We consider Bianchi type I cosmologies with unidirectional magnetic and electric fields, assuming as well the existence of a global spinor field ψ(t) as one more possible source of gravity able to suppress the inevitable anisotropy accompanying a nonzero vector field. The field ψ(t) is assumed to contain a nonlinearity in the form s n , where \(s=\overline{\psi}\psi\) and n=const (the special case n=1 corresponds to a Dirac massive field). The structure of the stress-energy tensor of the spinor field is shown to be the same as that of a perfect fluid with the equation of state p=w ρ where w=n−1. The Dirac massive spinor field and nonlinear fields with n<4/3 are shown to be able to provide isotropization. A numerical estimate shows that this isotropization could occur early enough to be compatible with observations.

Keywords

Bianchi-I cosmology Electromagnetic field Spinor field Isotropization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bali, R., Gokhroo, A.: Astrophys. Space Sci. 278, 283 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Brill, D., Wheeler, J.A.: Rev. Mod. Phys. 29, 465–479 (1957) zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bronnikov, K.A., Chudaeva, E.N., Shikin, G.N.: Class. Quantum Gravity 21, 3389–3403 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Giovannini, M.: astro-ph/0312614 (review paper, 146 pp.)
  5. 5.
    Harrison, E.R.: Phys. Rev. Lett. 30, 188 (1973) CrossRefADSGoogle Scholar
  6. 6.
    Horwood, J.T., Wainwright, J.: Gen. Relativ. Gravit. 36, 799 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Pradhan, A., Prakash Pandey, O.M.: gr-qc/0212109
  8. 8.
    Saha, B.: Phys. Elementary Part. At. Nucl. (Dubna) 37(7), 27–90 (2006) Google Scholar
  9. 9.
    Wheeler, J.A.: Neutrinos, Gravitation and Geometry. Bologna (1960) Google Scholar
  10. 10.
    Zeldovich, Ya.B., Ruzmaikin, A.A., Sokoloff, D.D.: Magnetic Field in Astrophysics. Gordon Breach, New York (1993) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. A. Bronnikov
    • 1
    • 2
  • E. N. Chudaeva
    • 2
  • G. N. Shikin
    • 2
  1. 1.VNIIMSMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations