Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 5, pp 1516–1522 | Cite as

The Controlled Teleportation of an Arbitrary Two-Atom Entangled State in Driven Cavity QED

  • Chuan-Jia Shan
  • Ji-Bing Liu
  • Tang-Kun Liu
  • Yan-Xia Huang
  • Hong Li
Article

Abstract

In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state |φ12=a|gg12+b|ge12+c|eg12+d|ee12 in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.

Keywords

Controlled teleportation Bell-state measurement Driven cavity QED 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993) zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Barenco, A., Deutsch, D., Ekert, A.: Phys. Rev. Lett. 74, 4083 (1995) CrossRefADSGoogle Scholar
  3. 3.
    Sleator, T., Weinfurter, H.: Phys. Rev. Lett. 74, 4087 (1995) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Zheng, S.B.: Opt. Commun. 167, 111 (1999) CrossRefADSGoogle Scholar
  5. 5.
    Bandyopadhyay, S.: Phys. Rev. A 62, 012308 (2000) CrossRefADSGoogle Scholar
  6. 6.
    Bouwmeester, D., et al.: Nature (London) 390, 575 (1997) CrossRefADSGoogle Scholar
  7. 7.
    Furusawa, A., et al.: Science 282, 706 (1998) CrossRefADSGoogle Scholar
  8. 8.
    Nielsen, M.A., Knill, E., Laflamme, R.: Nature (London) 396, 52 (1998) CrossRefADSGoogle Scholar
  9. 9.
    Karlsson, A., Bourennane, M.: Phys. Rev. A 58, 4394 (1998) CrossRefADSGoogle Scholar
  10. 10.
    Cohen, O.: Phys. Rev. Lett. 80, 1121 (1998) CrossRefGoogle Scholar
  11. 11.
    Yan, F.L., Wang, D.: Phys. Lett. A 316, 297 (2003) zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Yang, C.P., Chu, S.-I., Han, S.Y.: Phys. Rev. A 70, 022329 (2004) CrossRefADSGoogle Scholar
  13. 13.
    Riebe, M., et al.: Nature (London) 429, 734 (2004) CrossRefADSGoogle Scholar
  14. 14.
    Barrett, M.D., et al.: Nature (London) 429, 737 (2004) CrossRefADSGoogle Scholar
  15. 15.
    Moussa, M.H.Y.: Phys. Rev. A 55, R3287 (1997) CrossRefADSGoogle Scholar
  16. 16.
    de Almeida, N.G., et al.: Phys. Rev. A 62, R010101 (2000) CrossRefGoogle Scholar
  17. 17.
    Zheng, S.B.: Phys. Rev. A 69, 064302 (2004) CrossRefADSGoogle Scholar
  18. 18.
    Ye, L., Guo, G.C.: Phys. Rev. A 70, 054303 (2004) CrossRefADSGoogle Scholar
  19. 19.
    Jin, L.H., Jin, X.R., Zhang, S.: Phys. Rev. A 72, 024305 (2005) CrossRefADSGoogle Scholar
  20. 20.
    Lee, J., Min, H., Oh, S.D.: Phys. Rev. A 66, 052318 (2002) CrossRefADSGoogle Scholar
  21. 21.
    Rigolin, G.: Phys. Rev. A 71, 032303 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Deng, F.G., et al.: Phys. Rev. A 72, 022338 (2005) CrossRefADSGoogle Scholar
  23. 23.
    Zheng, S.B.: Phys. Rev. A 68, 035801 (2003) CrossRefADSGoogle Scholar
  24. 24.
    Osnaghi, S., et al.: Phys. Rev. Lett. 87, 037902 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chuan-Jia Shan
    • 1
  • Ji-Bing Liu
    • 1
  • Tang-Kun Liu
    • 1
  • Yan-Xia Huang
    • 1
  • Hong Li
    • 1
  1. 1.College of Physics and Electronic ScienceHubei Normal UniversityHuangshiChina

Personalised recommendations