Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 4, pp 1044–1052 | Cite as

Fractional Nambu Mechanics

  • Dumitru BaleanuEmail author
  • Alireza K. Golmankhaneh
  • Ali K. Golmankhaneh
Article

Abstract

The fractional generalization of Nambu mechanics is constructed by using the differential forms and exterior derivatives of fractional orders. The generalized Pfaffian equations are obtained and one example is investigated in details.

Keywords

Fractional derivative Hamiltonian mechanics Nambu mechanics Fractional differential forms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A. Math. Gen. 39, 10375–10384 (2006) zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Baleanu, D.: Killing-Yano tensors and Nambu tensors. Nuovo Cim. B 114(9), 1065–1072 (1999) ADSMathSciNetGoogle Scholar
  4. 4.
    Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, 119–121 (2005) zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) zbMATHGoogle Scholar
  6. 6.
    Cayley, A.: Collected Mathematical Papers, vol. 3, pp. 156–204. Cambridge University Press, Cambridge (1890) Google Scholar
  7. 7.
    Fecko, M.: On a geometric formulation of the Nambu dynamics. J. Math. Phys. 33, 926–929 (1992) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) Google Scholar
  9. 9.
    Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) zbMATHGoogle Scholar
  10. 10.
    Klimek, K.: Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslov. J. Phys. E 51, 1348–1354 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Klimek, K.: Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. E 52, 1247–1253 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) CrossRefADSGoogle Scholar
  13. 13.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006) Google Scholar
  14. 14.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993) Google Scholar
  15. 15.
    Mukund, N., Sudarshan, E.C.G.: Relation between Nambu and Hamiltonian mechanics. Phys. Rev. D 13(10), 2846–2851 (1976) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Naber, M.: Time fractional Schrodinger equation. J. Math. Phys. 45, 3339–3352 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi B 133, 425–430 (1986) CrossRefGoogle Scholar
  20. 20.
    Ogawa, T., Sagae, T.: Int. J. Theor. Phys. 39(12), 2875–2890 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974) zbMATHGoogle Scholar
  22. 22.
    Pandit, S.A., Gangal, A.D.: On generalized Nambu mechanics. J. Phys. A: Math. Gen. 31, 2899–2912 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Podlubny, I.: Fractional Differential Equations. Academic, New York (1999) zbMATHGoogle Scholar
  24. 24.
    Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, New York (1993) zbMATHGoogle Scholar
  28. 28.
    Takhtajan, L.: On foundation of generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994) zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005) zbMATHCrossRefADSGoogle Scholar
  30. 30.
    Tarasov, V.E.: Fractional variation for dynamical systems: Hamilton and Lagrange approaches. J. Phys. 39(26), 8409–8425 (2006) zbMATHADSMathSciNetGoogle Scholar
  31. 31.
    Tarasov, V.E.: Fractional statistical mechanics. Chaos 16, 033108–033115 (2006) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dumitru Baleanu
    • 1
    Email author
  • Alireza K. Golmankhaneh
    • 2
    • 3
  • Ali K. Golmankhaneh
    • 2
    • 3
  1. 1.Department of Mathematics and Computer SciencesÇankaya UniversityAnkaraTurkey
  2. 2.Department of PhysicsUniversity of PunePuneIndia
  3. 3.Department of PhysicsIslamic Azad University-Uromia BranchUromiaIran

Personalised recommendations