International Journal of Theoretical Physics

, Volume 48, Issue 4, pp 1003–1018 | Cite as

The Archaic Universe: Big Bang, Cosmological Term and the Quantum Origin of Time in Projective Cosmology

Article

Abstract

This article proposes some cosmological reflections at the qualitative and conjectural level, suggested by the Fantappié-Arcidiacono projective relativity theory. The difference will firstly be discussed between two types of singularity in this theory: geometric (de Sitter horizon) and physical (big bang, big crunch). The reasons for the existence of geometric singularities are deeply rooted in the principle of inertia and in the principle of relativity, while physical singularities are associated with the creation or destruction of matter.

In this framework, quantum mechanics is introduced through a particular interpretation of Bohm’s holomovement. Finally, a possible mechanism is discussed for the genesis of the cosmological term. No form of inflation appears in the scenario described.

Keywords

De Sitter cosmology Holomovement Imaginary time Cosmological constant Projective relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kutschera, M., Dyrda, M.: Coincidence of Universe age in ΛCDM and Milne cosmologies. arXiv:astro-ph/0605175v2 (2006)
  2. 2.
    Macleod, A.: An interpretation of Milne cosmology. arXiv:physics/0510170 (2005)
  3. 3.
    Arcidiacono, G.: Projective Relativity, Cosmology and Gravitation. Hadronic Press, Nonantum (1986). For a brief review see also: Arcidiacono, G.: A group approach to cosmological problem. Hadron. J. 16, 277–285 (1993) Google Scholar
  4. 4.
    Kerner, H.E.: An extension of the concept of inertial frame and of Lorentz transformation. Proc. Natl. Acad. Sci. USA 73, 1418–1421 (1976) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Aldrovandi, R., Bertrán Almeida, J.P., Pereira, J.G.: De Sitter Special Relativity. arXiv:gr-qc/0606122v2 (2005)
  6. 6.
    Chiatti, L.: Fantappié-Arcidiacono theory of relativity versus recent cosmological evidences: a preliminary comparison. Int. J. Theor. Phys. 15(4), 17–36 (2007). arXiv:physics/0702178 Google Scholar
  7. 7.
    Bohm, D.: Wholeness and the Implicate Order. Routledge & Kegan Paul, London (1980) Google Scholar
  8. 8.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1995) MATHGoogle Scholar
  9. 9.
    Tyapkin, A.A.: Expression of the general properties of physical processes in the space-time metric of the Special Theory of Relativity. Sov. Phys. Usp. 15, 205–229 (1972) CrossRefADSGoogle Scholar
  10. 10.
    Nambu, Y.: A Systematics of Hadrons in Subnuclear Physics. Preludes in Theoretical Physics. North-Holland, Amsterdam (1966). de-Shalit, A., Feshbach, H., van Hove, L. (eds.) Google Scholar
  11. 11.
    McGregor, M.H.: Electron generation of leptons and hadrons with reciprocal alpha-quantized lifetimes and masses. Int. J. Mod. Phys. A 20, 719–798 (2005). arXiv:hep-ph/0506033v1 CrossRefADSGoogle Scholar
  12. 12.
    Licata, I.: Universe without singularities. A group approach to De Sitter cosmology. Int. J. Theor. Phys. 10, 211–224 (2006) Google Scholar
  13. 13.
    Iovane, G., Giordano, P., Laserra, E.: Fantappié group as an extension of Special Relativity on ε(∞) Cantorian spacetime. Chaos Solitons Fractals 22(5), 975–983 (2004). arXiv:math-ph/0405056v1 MATHCrossRefGoogle Scholar
  14. 14.
    Bondi, H.: Cosmology. Cambridge University Press, Cambridge (1961) MATHGoogle Scholar
  15. 15.
    Bergia, S.: The fate of Weyl’s unified theory of 1918. In: Bevilacqua, F. (ed.) History of Physics in Europe in the 19th and 20th Centuries, pp. 185–193. SIF, Bologna (1993) Google Scholar
  16. 16.
    Anguige, K., Tod, K.P.: Isotropic cosmological singularities I. Polytropic perfect fluid spacetime. arXiv:gr-qc/9903008v1 (1999)
  17. 17.
    Pessa, E.: The De Sitter universe and General Relativity. Collect. Math. 24, 2 (1973) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Scientific MethodologyPalermoItaly
  2. 2.AUSL VT Medical Physics LaboratoryViterboItaly

Personalised recommendations