International Journal of Theoretical Physics

, Volume 47, Issue 11, pp 2862–2874 | Cite as

Bell’s Theorem, Many Worlds and Backwards-Time Physics: Not Just a Matter of Interpretation

Open Access
Article

Abstract

The classic “Bell’s Theorem” of Clauser, Holt, Shimony and Horne tells us that we must give up at least one of: (1) objective reality (aka “hidden variables”); (2) locality; or (3) time-forwards macroscopic statistics (aka “causality”). The orthodox Copenhagen version of physics gives up the first. The many-worlds theory of Everett and Wheeler gives up the second. The backwards-time theory of physics (BTP) gives up the third. Contrary to conventional wisdom, empirical evidence strongly favors Everett-Wheeler over orthodox Copenhagen. BTP allows two major variations—a many-worlds version and a neoclassical version based on Partial Differential Equations (PDE), in the spirit of Einstein. Section 2 of this paper discusses the origins of quantum measurement according to BTP, focusing on the issue of how we represent condensed matter objects like polarizers in a model “Bell’s Theorem” experiment. The backwards time telegraph (BTT) is not ruled out in BTP, but is highly speculative for now, as will be discussed.

Keywords

Bell’s theorem Local realism Many worlds Retrocausality Quantum measurement Klyshko SPDC-2 Markhov random fields 

References

  1. 1.
    Bell, J.S.: The Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. Press, Cambridge (1987) Google Scholar
  2. 2.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969) CrossRefADSGoogle Scholar
  3. 3.
    Kiess, T.E., Shih, Y.H., Sergienko, A.V., Alley, C.O.: Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type II parametric down conversion. Phys. Rev. Lett. 71, 3893 (1993) CrossRefADSGoogle Scholar
  4. 4.
    Dyson, F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75(11), 1736–1755 (1949). June 1 MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Mandl, F., Shaw, G.: Quantum Field Theory, revised edn. Wiley, New York (1993) Google Scholar
  6. 6.
    Weinberg, S.: The Quantum Theory of Fields. Cambridge Univ. Press, Cambridge (1995) Google Scholar
  7. 7.
    DeWitt, B.S., Graham, N. (eds.): The Many Worlds Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton (1973) Google Scholar
  8. 8.
    Deutch, D.: The Fabric of Reality: The Science of Parallel Universes and Its Implications. Penguin, Harmondsworth (1997) Google Scholar
  9. 9.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Vandersypen, L.M.K., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Realization of effective pure states for bulk quantum computation. quant-ph/9905041 (May 1999) Google Scholar
  11. 11.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge Univ. Press, Cambridge (1995) Google Scholar
  12. 12.
    Kadanoff, L., Baym, G.: Quantum Statistical Mechanics. W.A. Benjamin, New York (1962) MATHGoogle Scholar
  13. 13.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge Univ. Press, Cambridge (2005) MATHGoogle Scholar
  14. 14.
    DeBroglie, L.: Nonlinear Wave Mechanics: A Causal Interpretation, tr. by A. Knodel and J.C. Miller. Elsevier, Amsterdam (1960) Google Scholar
  15. 15.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That, first paperback edn. Princeton Univ. Press, Princeton (2000) Google Scholar
  16. 16.
    Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1981) MATHGoogle Scholar
  17. 17.
    Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1968) Google Scholar
  18. 18.
    Itzykson, C., Drouffe, J.: Statistical Field Theory, paperback edn. Cambridge Univ. Press, Cambridge (1991) Google Scholar
  19. 19.
    Price, H.: Cosmology, time’s arrow, and that old double standard. In: Savitt, S.S.F. (ed.) Time’s Arrow Today: Recent Physical and Philosophical Work on the Arrow of Time. Cambridge Univ. Press, Cambridge (1997) Google Scholar
  20. 20.
    Lipson, S.G., Lipson, H., Tannhauser, D.S.: Optical Physics, 3rd edn. Cambridge Univ. Press, Cambridge (1995), p. 129 Google Scholar
  21. 21.
    Jordan, M.I.: Learning in Graphical Models. Kluwer Academic, Dordrecht (1998) MATHGoogle Scholar
  22. 22.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 3rd edn. Oxford Univ. Press (Clarendon), Oxford (1996) MATHGoogle Scholar
  23. 23.
    El-Karoui, N., Mazliak, L. (eds.): Backward Stochastic Differential Equations. Addison-Wesley Longman, Reading (1997) MATHGoogle Scholar
  24. 24.
    Werbos, P.: An approach to the realistic explanation of quantum mechanics. Nuovo Cimento Lett. 29B, 105–109 (1973) CrossRefGoogle Scholar
  25. 25.
    Werbos, P.: Schwinger’s magnetic model of matter—can it help us with grand unification, arXiv:0707.2520, revised January 2008 (under submission) Google Scholar
  26. 26.
    Werbos, P., Dolmatova, L.: The backwards-time interpretation—revisited with experiment. arXiv:quant-ph/0008036 (2000) Google Scholar
  27. 27.
    Walls, D.F., Milburn, G.F.: Quantum Optics. Springer, New York (1994) MATHGoogle Scholar
  28. 28.
    Louisell, W.H., Yariv, A., Siegman, A.E.: Phys. Rev. 124, 1646 (1961) MATHCrossRefADSGoogle Scholar
  29. 29.
    Klyshko, D.N.: Photons and Nonlinear Optics. Gordon and Breach, London (1988) Google Scholar
  30. 30.
    Kim, Y.-H., Shih, Y.: Experimental realization of Popper’s experiment: violation of the uncertainty principle? Found. Phys. 29(12) (1999) Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Quantum, Molecular and High Performance Modeling program, Engineering DirectorateNational Science FoundationArlingtonUSA

Personalised recommendations