International Journal of Theoretical Physics

, Volume 47, Issue 10, pp 2655–2662

A Quantum Mechanical Relation Connecting Time, Temperature, and Cosmological Constant of the Universe: Gamow’S Relation Revisited as a Special Case

Article

Abstract

Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter, dark matter and dark energy which is represented by a repulsive harmonic potential among the points in the flat 3-space and incorporating Mach’s principle into our theory, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back Gamow’s relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.0×10−56 cm−2 when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.

Keywords

Cosmological constant Cosmology Self-gravitating systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guth, A.H.: In: Cornell, J. (ed.) Bubbles, Voids and Bumps in Time: the New Cosmology. Cambridge University Press, Cambridge (1989) Google Scholar
  2. 2.
    Contopoulos, G., Kotsakis, D.: Cosmology. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  3. 3.
    Riess, A.G., et al.: Astron. J. 116, 1009 (1998); Supernova Search Team Collaboration ADSCrossRefGoogle Scholar
  4. 4.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999); Supernova Cosmology Project Collaboration ADSCrossRefGoogle Scholar
  5. 5.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Harrison, E.: Cosmology, 2nd edn. Cambridge University Press, Cambridge (2000) CrossRefMATHGoogle Scholar
  7. 7.
    Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    Narlikar, J.V.: An Introduction to Cosmology, 3rd edn. Cambridge University Press, Cambridge (2002) Google Scholar
  9. 9.
    Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003) MATHGoogle Scholar
  10. 10.
    Laughlin, R.B.: Int. J. Mod. Phys. A 18, 831 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hu, J.P., Zhang, S.C.: Phys. Rev. B 66, 125301 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    Tripathy, D.N., Mishra, S.: Int. J. Mod. Phys. D 7(3), 431 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    Tripathy, D.N., Mishra, S.: Int. J. Mod. Phys. D 7(6), 917 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    Mishra, S., Tripathy, D.N.: gr-qc/9912037 Google Scholar
  15. 15.
    Karplus, A., Porter, R.N.: Atoms and Molecules. Reading, Benjamin Inc. (1970) Google Scholar
  16. 16.
    Penzias, A.A., Wilson, R.W.: Astrophys. J. 142, 419 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    Fixen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., Wright, E.L.: Astrophys. J. 473, 576 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    Liddle, A.R.: Contemp. Phys. 39(2), 95 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations