Advertisement

International Journal of Theoretical Physics

, Volume 47, Issue 10, pp 2655–2662 | Cite as

A Quantum Mechanical Relation Connecting Time, Temperature, and Cosmological Constant of the Universe: Gamow’S Relation Revisited as a Special Case

  • Subodha MishraEmail author
Article

Abstract

Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter, dark matter and dark energy which is represented by a repulsive harmonic potential among the points in the flat 3-space and incorporating Mach’s principle into our theory, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back Gamow’s relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.0×10−56 cm−2 when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.

Keywords

Cosmological constant Cosmology Self-gravitating systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guth, A.H.: In: Cornell, J. (ed.) Bubbles, Voids and Bumps in Time: the New Cosmology. Cambridge University Press, Cambridge (1989) Google Scholar
  2. 2.
    Contopoulos, G., Kotsakis, D.: Cosmology. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  3. 3.
    Riess, A.G., et al.: Astron. J. 116, 1009 (1998); Supernova Search Team Collaboration ADSCrossRefGoogle Scholar
  4. 4.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999); Supernova Cosmology Project Collaboration ADSCrossRefGoogle Scholar
  5. 5.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Harrison, E.: Cosmology, 2nd edn. Cambridge University Press, Cambridge (2000) CrossRefzbMATHGoogle Scholar
  7. 7.
    Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    Narlikar, J.V.: An Introduction to Cosmology, 3rd edn. Cambridge University Press, Cambridge (2002) Google Scholar
  9. 9.
    Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003) zbMATHGoogle Scholar
  10. 10.
    Laughlin, R.B.: Int. J. Mod. Phys. A 18, 831 (2003) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hu, J.P., Zhang, S.C.: Phys. Rev. B 66, 125301 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    Tripathy, D.N., Mishra, S.: Int. J. Mod. Phys. D 7(3), 431 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    Tripathy, D.N., Mishra, S.: Int. J. Mod. Phys. D 7(6), 917 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    Mishra, S., Tripathy, D.N.: gr-qc/9912037 Google Scholar
  15. 15.
    Karplus, A., Porter, R.N.: Atoms and Molecules. Reading, Benjamin Inc. (1970) Google Scholar
  16. 16.
    Penzias, A.A., Wilson, R.W.: Astrophys. J. 142, 419 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    Fixen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., Wright, E.L.: Astrophys. J. 473, 576 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    Liddle, A.R.: Contemp. Phys. 39(2), 95 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations