International Journal of Theoretical Physics

, Volume 47, Issue 9, pp 2218–2229

Magnetized Stiff Fluid Cylindrically Symmetric Universe with Two Degrees of Freedom in General Relativity

Article

Abstract

A magnetized stiff fluid cylindrically symmetric universe with two degrees of freedom for perfect fluid distribution, is investigated. The magnetic field is due to an electric current produced along x-axis. The distribution consists of an electrically neutral perfect fluid with an infinite electrical conductivity. The behaviour of the model in presence and absence of magnetic field is discussed. The other physical aspects of the model related to the observations are also discussed.

Keywords

Magnetized Stiff fluid Cylindrically symmetric Two degrees of freedom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zel’dovich, Ya.B.: Z. Eksp. Teor. Fiz. 41, 1609 (1961) Google Scholar
  2. 2.
    Zel’dovich, Ya.B.: Mon. Not. R. Astron. Soc. 160, 1 (1970) Google Scholar
  3. 3.
    Barrow, J.D.: Nature 272, 211 (1978) CrossRefADSGoogle Scholar
  4. 4.
    Letelier, P.S., Tabensky, R.R.: Nuovo Cimento B 28, 407 (1975) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Tabensky, R.R., Taub, A.H.: Commun. Math. Phys. 29, 61 (1973) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Roy, S.R., Singh, P.N.: J. Phys. A 14, 1049 (1977) MathSciNetGoogle Scholar
  7. 7.
    Wesson, P.S.: J. Math. Phys. 19, 2283 (1978) CrossRefADSGoogle Scholar
  8. 8.
    McIntosh, C.B.G.: Phys. Lett. A 69, 1 (1978) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Mohanty, G., Tiwari, R.N., Rao, J.R.: Int. J. Theor. Phys. 21(2), 105 (1982) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Götz, G.: Gen. Relativ. Gravit. 20, 23 (1988) MATHCrossRefADSGoogle Scholar
  11. 11.
    Asseo, E., Sol, H.: Phys. Rep. 6, 148 (1987) Google Scholar
  12. 12.
    Bronnikov, K.A., Chudayeva, E.N., Shikin, G.N.: Class. Quantum Gravity 21, 3389 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hughston, L.P., Jacobs, K.C.: Astrophys. J. 160, 147 (1970) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Thorne, K.S.: Astrophys. J. 148, 51 (1967) CrossRefADSGoogle Scholar
  15. 15.
    Roy, S.R., Singh, J.P.: Aust. J. Phys. 38(5), 763 (1985) ADSMathSciNetGoogle Scholar
  16. 16.
    Bali, R., Tyagi, A.: Int. J. Theor. Phys. 27(5), 627 (1987) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Maartens, R.: Pramana J. Phys. 55(4), 575 (2000) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Jacobs, K.C.: Astrophys. J. 153, 661 (1968) CrossRefADSGoogle Scholar
  19. 19.
    Jacobs, K.C.: Astrophys. J. 155, 379 (1969) CrossRefADSGoogle Scholar
  20. 20.
    Collins, C.B.: Commun. Math. Phys. 27, 37 (1972) CrossRefADSGoogle Scholar
  21. 21.
    Roy, S.R., Prakash, S.: Indian J. Phys. B 52, 47 (1978) Google Scholar
  22. 22.
    Roy, S.R., Bali, R., Prakash, S.: Proc. Indian Acad. Sci. A 87, 181 (1978) ADSCrossRefGoogle Scholar
  23. 23.
    Bali, R., Ali, M.: Pramana J. Phys. 47(1), 25 (1996) CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Stachel, J.J.: J. Math. Phys. 6, 1321 (1966) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 93. Benjamin, Elmsford (1967) MATHGoogle Scholar
  26. 26.
    Ellis, G.F.R.: General Relativity and Cosmology, p. 117. Academic Press, New York (1971) (Sachs, R.K. (ed.)) Google Scholar
  27. 27.
    MacCallum, M.A.H.: Commun. Math. Phys. 20, 57 (1971) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RajasthanJaipurIndia
  2. 2.Department of MathematicsGovernment Engineering CollegeAjmerIndia

Personalised recommendations