International Journal of Theoretical Physics

, Volume 47, Issue 7, pp 1809–1816 | Cite as

A Closed-System Approach to Quantum Retrodiction in Open Systems

Article

Abstract

Ban (Int. J. Theor. Phys. 46:184, 2007) has shown how retrodictive open systems evolution may be treated as unitary using non-equilibrium thermo field dynamics. Here we describe the application of another technique with the same purpose, Fano diagonalisation.

Keywords

Retrodiction Open systems Fano diagonalisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharonov, Y., Albert, D.Z.: Is the usual notion of time evolution adequate for quantum-mechanical systems? I. Phys. Rev. D 29, 223 (1984) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Aharonov, Y., Albert, D.Z.: Is the usual notion of time evolution adequate for quantum-mechanical systems? II. Relativistic considerations. Phys. Rev. D 29, 228 (1984) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315 (1991) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Arimitsu, T.: General formulation for open systems mirror operation. J. Phys. Soc. Jpn. 51, 1720 (1982) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Arimitsu, T., Umezawa, H.: A general formulation of non-equilibrium thermo field dynamics. Prog. Theor. Phys. 74, 429 (1985) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Arimitsu, T., Umezawa, H.: Non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 32 (1987) CrossRefADSGoogle Scholar
  8. 8.
    Arimitsu, T., Umezawa, H.: General structure of non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 53 (1987) CrossRefADSGoogle Scholar
  9. 9.
    Ban, M.: Quantum retrodiction in non-equilibrium thermo field dynamics. Int. J. Theor. Phys. 46, 184 (2007) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Barnett, S.M., Radmore, P.M.: Quantum theory of cavity quasimodes. Opt. Commun. 68, 364 (1988) CrossRefADSGoogle Scholar
  11. 11.
    Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (1997) Google Scholar
  12. 12.
    Barnett, S.M., Pegg, D.T., Jeffers, J.: Bayes’ theorem and quantum retrodiction. J. Mod. Opt. 47, 1779 (2000) MATHADSMathSciNetGoogle Scholar
  13. 13.
    Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O.: Atomic retrodiction. J. Phys. B: At. Mol. Opt. Phys. 33, 3047 (2000) CrossRefADSGoogle Scholar
  14. 14.
    Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O., Loudon, R.: Retrodiction for quantum optical communications. Phys. Rev. A 62, 022313 (2000) CrossRefADSGoogle Scholar
  15. 15.
    Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O.: Master equation for retrodiction of quantum communication signals. Phys. Rev. Lett. 86, 2455 (2001) CrossRefADSGoogle Scholar
  16. 16.
    Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961) MATHCrossRefADSGoogle Scholar
  17. 17.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976) Google Scholar
  18. 18.
    Huttner, B., Barnett, S.M.: Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306 (1992) CrossRefADSGoogle Scholar
  19. 19.
    Jedrkiewicz, O., Loudon, R., Jeffers, J.: Retrodiction for optical attenuators, amplifiers and detectors. Phys. Rev. A 70, 033805 (2004) CrossRefADSGoogle Scholar
  20. 20.
    Jeffers, J.: Retrodictive fidelities for pure state postselectors. New J. Phys. 8, 268 (2006) CrossRefADSGoogle Scholar
  21. 21.
    Jeffers, J., Horak, P., Barnett, S.M., Radmore, P.M.: Bound mode of an atom laser. Phys. Rev. A 62, 043602 (2000) CrossRefADSGoogle Scholar
  22. 22.
    Jeffers, J., Barnett, S.M., Pegg, D.T.: Retrodiction as a tool for micromaser field measurements. J. Mod. Opt. 49, 925 (2002) MATHCrossRefADSGoogle Scholar
  23. 23.
    Pegg, D.T., Jeffers, J.: Quantum state of a laser. J. Mod. Opt. 52, 1835 (2005) MATHCrossRefADSGoogle Scholar
  24. 24.
    Pegg, D.T., Barnett, S.M., Jeffers, J.: Quantum theory of preparation and measurement. J. Mod. Opt. 49, 913 (2002) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Pegg, D.T., Barnett, S.M., Jeffers, J.: Quantum retrodiction in open systems. Phys. Rev. A 66, 022106 (2002) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Penfield, R.H.: More on the arrow of time. Am. J. Phys. 34, 422 (1966) CrossRefADSGoogle Scholar
  27. 27.
    Schmidt, E., Jeffers, J., Barnett, S.M., Knöll, L., Welsch, D.-G.: Quantum theory of light in nonlinear media with dispersion and absorption. J. Mod. Opt. 45, 377 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    Tan, E.-K., Jeffers, J., Barnett, S.M.: Field-state measurement in a micromaser using retrodictive quantum theory. Phys. Rev. A 69, 043806 (2004) CrossRefADSGoogle Scholar
  29. 29.
    Watanabe, S.: Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27, 179 (1955) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics, SUPAUniversity of StrathclydeGlasgowUK

Personalised recommendations