International Journal of Theoretical Physics

, Volume 47, Issue 4, pp 891–897 | Cite as

Mapping of Shape Invariant Potentials by the Point Canonical Transformation

Article

Abstract

In this paper by using the method of point canonical transformation we find that the Coulomb and Kratzer potentials can be mapped to the Morse potential. Then we show that the Pöschl-Teller potential type I belongs to the same subclass of shape invariant potentials as Hulthén potential. Also we show that the shape-invariant algebra for Coulomb, Kratzer, and Morse potentials is SU(1,1), while the shape-invariant algebra for Pöschl-Teller type I and Hulthén is SU(2).

Keywords

Point canonical transformation Supersymmetric quantum mechanics Shape-invariant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gendenshtein, L.: JETP Lett. 38, 356 (1983) ADSGoogle Scholar
  2. 2.
    Cooper, F., Ginocchio, J.N., Khare, A.: Phys. Rev. D 36, 2458 (1987) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Dabrowska, J.W., Khare, A., Sukhatme, U.P.: J. Phys. A 21, L195 (1988) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Cooper, F., Khare, A., Sukhatme, U.: Phys. Rep. 251, 268 (1995) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gendenshtein, L.E., Krive, I.V.: Sov. Phys. Usp. 28, 645 (1985) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cooper, I.L.: J. Phys. A: Math. Gen. 26, 1601 (1993) MATHCrossRefADSGoogle Scholar
  7. 7.
    Kratzer, A.: Z. Phys. 3, 289 (1920) CrossRefADSGoogle Scholar
  8. 8.
    Hulthén, L.: Ark. Math. Astron. Fys. 28A, 5 (1942) Google Scholar
  9. 9.
    Hulthén, L.: Ark. Math. Astron. Fys. 29B, 1 (1942) Google Scholar
  10. 10.
    Eckart, C.: Phys. Rev. 35, 1303 (1930) CrossRefADSGoogle Scholar
  11. 11.
    Le Roy, R.J., Bernstein, R.B.: J. Chem. Phys. 52, 3869 (1970) CrossRefADSGoogle Scholar
  12. 12.
    Khare, A., Sukhatme, U.: J. Phys. A: Math. Gen. 26, L901 (1993) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Barclay, D., et al.: Phys. Rev. A 48, 2786 (1993) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Infeld, L., Hull, T.E.: Rev. Mod. Phys. 23, 21 (1951) MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Berlin (2007) MATHGoogle Scholar
  16. 16.
    Balantekin, A.B.: Phys. Rev. A 6, 4188 (1998) CrossRefADSGoogle Scholar
  17. 17.
    Chuan, C.: J. Phys. A 24, L1165 (1991) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Dong, S.H., Lemus, R., Frank, A.: Int. J. Quant. Chem. 86, 433 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of SciencePayame Noor UniversityBijarIran
  2. 2.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”NapoliItaly

Personalised recommendations