International Journal of Theoretical Physics

, Volume 47, Issue 1, pp 200–211 | Cite as

A Macroscopic Device for Quantum Computation

  • Diederik Aerts
  • Ellie D’Hondt
  • Bart D’Hooghe
  • Marek Czachor
  • Jeroen Dehaene
  • Bart De Moor
Article
  • 45 Downloads

Abstract

We show how a compound system of two entangled qubits in a non-product state can be described in a complete way by extracting entanglement into an internal constraint between the two qubits. By making use of a sphere model representation for the spin 1/2, we derive a geometric model for entanglement. We illustrate our approach on 2-qubit algorithms proposed by Deutsch, respectively Arvind. One of the advantages of the 2-qubit case is that it allows for a nice geometrical representation of entanglement, which contributes to a more intuitive grasp of what is going on in a 2-qubit quantum computation.

Keywords

Quantum computation Entanglement Macroscopic quantum models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400, 97–117 (1985) MATHADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Shor, P.W.: Algorithms for quantum computation, discrete logarithms and factoring. In: Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994) CrossRefGoogle Scholar
  3. 3.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Computing, pp. 212–219 (1996) Google Scholar
  4. 4.
    Aerts, D., Colebunders, E., Van der Voorde, A., Van Steirteghem, B.: State property systems and closure spaces: a study of categorical equivalence. Int. J. Theor. Phys. 38, 359–385 (1999) MATHCrossRefGoogle Scholar
  5. 5.
    Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with  \(2\sqrt{2}\) , exactly ‘in the same way’ as its violations by the EPR experiments. Helv. Phys. Acta 64, 1–23 (1991) MathSciNetGoogle Scholar
  7. 7.
    Aerts, D., D’Hondt, E., D’Hooghe, B.: A geometrical representation of entanglement as internal constraint. Int. J. Theor. Phys. 44, 897–907 (2005) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Arvind, B., Mukunda, N.: A two-qubit algorithm involving quantum entanglement. quant-ph/0006069 (2000) Google Scholar
  9. 9.
    Dorai, K., Arvind, B., Kumar, A.: Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level on an NMR quantum information processor. Phys. Rev. A 63, 034101/1–4 (2001) CrossRefADSGoogle Scholar
  10. 10.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Czachor, M.: On classical models of spin. Found. Phys. Lett. 5, 249–264 (1992) CrossRefMathSciNetGoogle Scholar
  12. 12.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932) MATHGoogle Scholar
  13. 13.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967) MATHMathSciNetGoogle Scholar
  14. 14.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
  15. 15.
    Grib, A., Khrennikov, A., Parfionov, G., Starkov, K.: Quantum equilibria for macroscopic systems. J. Phys. A: Math. Gen. 39, 8461–8475 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Khrennikov, A.: Quantum-like representation of macroscopic configurations. quant-ph/0705.3898 (2007) Google Scholar
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. University Press, Cambridge (2000) MATHGoogle Scholar
  18. 18.
    Coecke, B.: Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes. Found. Phys. Lett. 8, 437–447 (1995) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Ellie D’Hondt
    • 1
  • Bart D’Hooghe
    • 1
  • Marek Czachor
    • 2
  • Jeroen Dehaene
    • 3
  • Bart De Moor
    • 3
  1. 1.Leo Apostel Centre for Interdisciplinary Studies (CLEA) and Foundations of the Exact Sciences (FUND), Department of MathematicsVrije Universiteit BrusselBrusselsBelgium
  2. 2.Katedra Fizyki Teoretycznej i Metod MatematycznychPolitechnika GdańskaGdańskPoland
  3. 3.SISTA, Department of Electrical Engineering (ESAT), Faculty of EngineeringKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations