International Journal of Theoretical Physics

, Volume 47, Issue 1, pp 61–68 | Cite as

How To Play Two-Player Restricted Quantum Games with 10 Cards

  • Diederik Aerts
  • Bart D’Hooghe
  • Andrzej Posiewnik
  • Jaroslaw Pykacz
  • Jeroen Dehaene
  • Bart De Moor
Article

Abstract

We show that it is possible to play ‘restricted’ two-player quantum games proposed originally by Marinatto and Weber (Phys. Lett. A 272:291–303, 2000) by purely macroscopic means, in the simplest case having as the only equipment a pack of 10 cards. Our example shows also that some apparently ‘genuine quantum’ results, even those that emerge as a consequence of dealing with entangled states, can be obtained by suitable application of Kolmogorovian probability calculus and secondary-school mathematics, without application of the ‘Hilbert space machinery’.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    For a review see Iqbal, A.: (2004), Studies in the theory of quantum games. PhD thesis, Quaid-i-Azam University. quant-ph/0503176 Google Scholar
  5. 5.
    Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543–2556 (2000) MATHADSMathSciNetGoogle Scholar
  6. 6.
    van Enk, S.J.: Quantum and classical game strategies. Phys. Rev. Lett. 84, 789 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with \(2\sqrt{2}\) , exactly ‘in the same way’ as its violations by the EPR experiments. Helv. Phys. Acta 64, 1–23 (1991) MathSciNetGoogle Scholar
  8. 8.
    Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Aerts, D.: Quantum structures due to fluctuations of the measurement situations. Int. J. Theor. Phys. 32, 2207–2220 (1993) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Grib, A., Khrennikov, A., Parfionov, G., Starkov, K.: Quantum equilibria for macroscopic systems. J. Phys. A: Math. Gen. 39, 8461–8475 (2006) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Bart D’Hooghe
    • 1
  • Andrzej Posiewnik
    • 2
  • Jaroslaw Pykacz
    • 3
  • Jeroen Dehaene
    • 4
  • Bart De Moor
    • 4
  1. 1.Leo Apostel Centre for Interdisciplinary Studies (CLEA) and Foundations of the Exact Sciences (FUND), Department of MathematicsVrije Universiteit BrusselBrusselsBelgium
  2. 2.Institute of Theoretical Physics and AstrophysicsUniversity of GdańskGdańskPoland
  3. 3.Institute of MathematicsUniversity of GdańskGdańskPoland
  4. 4.SISTA, Department of Electrical Engineering (ESAT), Faculty of EngineeringKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations