Advertisement

International Journal of Theoretical Physics

, Volume 46, Issue 12, pp 3263–3274 | Cite as

Energy and Momentum Densities of Cosmological Models, with Equation of State ρ=μ, in General Relativity and Teleparallel Gravity

  • Ragab M. Gad
Article

Abstract

We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann–Thomson and Landau–Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex’s value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.

Keywords

Energy and momentum densities Stiff fluid solutions Teleparallel gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 778 (1915) Google Scholar
  2. 2.
    Tolman, R.C.: Relativity, Thermodynamics and Cosmology, p. 227. Oxford University Press, Oxford (1934) Google Scholar
  3. 3.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, p. 317. Addison–Wesley, Reading (1951) MATHGoogle Scholar
  4. 4.
    Papapetrou, A.: Proc. Roy. Ir. Acad. A 52, 11 (1948) MathSciNetGoogle Scholar
  5. 5.
    Bergmann, P.G., Thomson, R.: Phys. Rev. 89, 400 (1953) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of General Theory of Relativity, p. 165. Wiley, New York (1972) Google Scholar
  7. 7.
    Møller, C.: Ann. Phys. (N.Y.) 4, 347 (1958) MATHCrossRefADSGoogle Scholar
  8. 8.
    Virbhadra, K.S.: Phys. Rev. D 41, 1086 (1990) MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Virbhadra, K.S.: Phys. Rev. D 42, 1066 (1990) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Virbhadra, K.S.: Phys. Rev. D 42, 2919 (1990) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Virbhadra, K.S.: Pramana J. Phys. 45, 215 (1995) ADSGoogle Scholar
  12. 12.
    Chamorro, A., Virbhadra, K.S.: Pramana J. Phys. 45, 181 (1995) ADSGoogle Scholar
  13. 13.
    Virbhadra, K.S., Parikh, J.C.: Phys. Lett. B 317, 312 (1993) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Virbhadra, K.S., Parikh, J.C.: Phys. Lett. B 331, 302 (1994) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Aguirregabiria, J.M., Chamorro, A., Virbhadra, K.S.: Gen. Relativ. Gravit. 28, 1393 (1996) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Virbhadra, K.S.: Phys. Rev. D 60, 104041 (1999) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Xulu, S.S.: Astrophys. Space Sci. 283, 23 (2003) MATHCrossRefADSGoogle Scholar
  18. 18.
    Vagenas, E.C.: Int. J. Mod. Phys. A 18, 5781 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Vagenas, E.C.: Int. J. Mod. Phys. A 18, 5949 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Vagenas, E.C.: Mod. Phys. Lett. A 19, 213 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Vagenas, E.C.: Int. J. Mod. Phys. D 14, 573 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Vagenas, E.C.: Mod. Phys. Lett. A 21, 1947 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Xulu, S.S.: Mod. Phys. Lett. A 15, 1511 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Chamorro, A., Virbhadra, K.S.: Int. J. Mod. Phys. D 5, 251 (1996) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Radinschi, I.: Mod. Phys. Lett. A 16, 673 (2001) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Virbhadra, K.S.: Int. J. Mod. Phys. A 12, 4831 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Gad, R.M.: Nuovo Cimento B 121, 161 (2006) ADSMathSciNetGoogle Scholar
  28. 28.
    Gad, R.M.: Astrophys. Space Sci. 293, 453 (2004) CrossRefADSGoogle Scholar
  29. 29.
    Gad, R.M.: Mod. Phys. Lett. A 19, 1847 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Gad, R.M.: Astrophys. Space Sci. 302, 141 (2006) CrossRefADSGoogle Scholar
  31. 31.
    Gad, R.M.: Gen. Relativ. Gravit. 38, 417 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Vargas, T.: Gen. Relativ. Gravit. 36, 1255 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Salti, M.: Astrophys. Space Sci. 299, 159 (2005) MATHCrossRefADSGoogle Scholar
  34. 34.
    Aydogdu, O., Salti, M.: Astrophys. Space Sci. 299, 227 (2005) MATHCrossRefADSGoogle Scholar
  35. 35.
    Salti, M., Havare, A.: Int. J. Mod. Phys. A 20, 2165 (2005) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Havare, A., Korunur, M., Salti, M.: Astrophys. Space Sci. 301, 43 (2006) CrossRefADSGoogle Scholar
  37. 37.
    Verdaguer, E.: Phys. Rep. 229, 1 (1993) CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Wainwright, J., Ince, W.C.W., Marshman, B.J.: Gen. Relativ. Gravit. 10, 259 (1979) MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hayashi, K., Shirafuji, T.: Phys. Rev. D 19, 3524 (1978) CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Hammond, R.T.: Rep. Prog. Phys. 65, 599 (2002) CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Weitzenböck, R.: Invariantentheorie. Noordhoff, Gronningen (1923) Google Scholar
  42. 42.
    de Andrade, V.C., Pereira, J.G.: Phys. Rev. D 56, 4689 (1997) CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    de Andrade, V.C., Guillen, L.C.T., Pereira, J.G.: Phys. Rev. Lett. 84, 4533 (2000) CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Møller, C.: The Theory of Relativity. Clarendon, Oxford (1952) MATHGoogle Scholar
  45. 45.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 603. Freeman, New York (1973) Google Scholar
  46. 46.
    Cooperstock, F.I., Sarracino, R.S.: J. Phys. A 11, 877 (1978) CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Bondi, H.: Proc. Roy. Soc. Lond. A 427, 249 (1990) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Cooperstock, F.I.: Found. Phys. 22, 1011 (1992) ADSMathSciNetGoogle Scholar
  49. 49.
    Cooperstock, F.I.: In: Mansouri, F., Scanio, J.J. (eds.) Topics in Quantum Gravity and Beyond: Pepers in Honor of L. Witten, p. 201. World Scientific, Singapore (1993) Google Scholar
  50. 50.
    Cooperstock, F.I.: In: Buitrago, et al. (eds.) Relativistic Astrophysics and Cosmology, p. 61. World Scientific, Singapore (1997) Google Scholar
  51. 51.
    Cooperstock, F.I.: Ann. Phys. 282, 115 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Xulu, S.S.: Mod. Phys. Lett. A 15 1511 Google Scholar
  53. 53.
    Xulu, S.S.: Astrophys. Space Sci. 283, 23 (2003) MATHCrossRefADSGoogle Scholar
  54. 54.
    Bringley, T.: Mod. Phys. Lett. A 17, 175 (2002) CrossRefMathSciNetGoogle Scholar
  55. 55.
    Gad, R.M.: Astrophys. Space Sci. 295, 451 (2005) CrossRefADSGoogle Scholar
  56. 56.
    Chang, C.C., Nester, J.M., Chen, C.M.: Phys. Rev. Lett. 83, 1897 (1999) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceMinia UniversityEl-MiniaEgypt

Personalised recommendations