International Journal of Theoretical Physics

, Volume 46, Issue 8, pp 2053–2062 | Cite as

Remarks on Causality in Relativistic Quantum Field Theory

Erratum

Abstract

It is shown that the correlations predicted by relativistic quantum field theory in locally normal states between projections in local von Neumann algebras \({\cal A}\)(V 1),\({\cal A}\)(V 2) associated with spacelike separated spacetime regions V 1,V 2 have a (Reichenbachian) common cause located in the union of the backward light cones of V 1 and V 2. Further comments on causality and independence in quantum field theory are made.

Keywords

algebraic quantum field theory causality Reichenbach’s Common Cause Principle 

References

  1. Borchers, H.-J. (1965). On the vacuum state in quantum field theory, II. Communications in Mathematical Physics 1, 57–79.MATHCrossRefADSMathSciNetGoogle Scholar
  2. Buchholz, D. and Verch, R. (1996). Scaling algebras and renormalization group in algebraic quantum field theory. Reviews in Mathematical Physics 7, 1195–1239.CrossRefADSMathSciNetGoogle Scholar
  3. Cirel’son, B. S. (1980). Quantum generalizations of Bell’s inequalities, Letters in Mathematical Physics 4, 93–100.CrossRefMathSciNetGoogle Scholar
  4. Florig, M. and Summers, S. J. (1997). On the statistical independence of algebras of observables, Journal of Mathematical Physics 38, 1318–1328.MATHCrossRefADSMathSciNetGoogle Scholar
  5. Fredenhagen, K. (1985). On the modular structure of local algebras of observables, Communications in Mathematical Physics 97, 79–89.MATHCrossRefADSMathSciNetGoogle Scholar
  6. Garber, W. D. (1975). The connexion of duality and causality properties for generalized free fields, Communications in Mathematical Physics 42, 195–208.MATHCrossRefADSMathSciNetGoogle Scholar
  7. Glimm, J. and Jaffe, A. (1972). Boson quantum field models. In Mathematics in Contemporary Physics, Streater, R. F., ed., Academic Press, New York.Google Scholar
  8. Haag, R. and Schroer, B. (1962). Postulates of quantum field theory, Journal of Mathematical Physics 3, 248–256.CrossRefMathSciNetGoogle Scholar
  9. Haag, R. (1992), Local Quantum Physics, Springer Verlag, Berlin.MATHGoogle Scholar
  10. Halvorson, H. and Clifton, R. (2000). Generic Bell correlation between arbitrary local algebras in quantum field theory, Journal of Mathematical Physics 41, 1711–1717.MATHCrossRefADSMathSciNetGoogle Scholar
  11. Hamhalter, J. (1997). Statistical independence of operator algebras, Annales de l’Institut Henri Poincaré - Physique théorique 67, 447–462.MATHMathSciNetGoogle Scholar
  12. Hofer-Szabó, G., Rédei, M., and Szabó, L. E. (1999). On Reichenbach’s Common Cause Principle and Reichenbach’s notion of common cause, British Journal for the Philosophy of Science 50, 377–399.MATHCrossRefMathSciNetGoogle Scholar
  13. Hofer-Szabó, G., Rédei, M., and Szabó, L. E. (2002). Common-Causes are not common common-causes, Philosophy of Science 69, 623–636.CrossRefMathSciNetGoogle Scholar
  14. Horuzhy, S. S. (1990), Introduction to Algebraic Quantum Field Theory, Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  15. Neumann, H. and Werner, R. (1983). Causality between preparation and registration processes in relativistic quantum theory, International Journal of Theoretical Physics 22, 781–802.MATHCrossRefADSMathSciNetGoogle Scholar
  16. Rédei, M. (1995a). Logically independent von Neumann lattices, International Journal of Theoretical Physics 34, 1711–1718.MATHCrossRefGoogle Scholar
  17. Rédei, M. (1995). Logical independence in quantum logic, Foundations of Physics 25, 411–422.CrossRefMathSciNetGoogle Scholar
  18. Rédei, M. (1997). Reichenbach’s common cause principle and quantum field theory, Foundations of Physics 27, 1309–1321.CrossRefMathSciNetGoogle Scholar
  19. Rédei, M. (1998), Quantum Logic in Algebraic Approach, Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  20. Rédei, M. and Summers, S. J. (2002). Local primitive causality and the Common Cause Principle in quantum field theory, Foundations of Physics 32, 335–355.CrossRefMathSciNetGoogle Scholar
  21. Reichenbach, H. (1956), The Direction of Time, University of California Press, Los Angeles.Google Scholar
  22. Roos, H.-J. (1970). Independence of local algebras in quantum field theory, Communications in Mathematical Physics 16, 238–246.MATHCrossRefADSMathSciNetGoogle Scholar
  23. Salmon, W. C. (1984) Scientific Explanation and the Causal Structure of the World, Princeton University Press, Princeton.Google Scholar
  24. Summers, S. J. (1990). On the independence of local algebras in quantum field theory, Reviews in Mathematical Physics 2, 201–247.MATHCrossRefADSMathSciNetGoogle Scholar
  25. Summers, S. J. and Werner, R. (1985). The vacuum violates Bell’s inequalities, Physics Letters A 110, 257–279.CrossRefADSMathSciNetGoogle Scholar
  26. Summers, S. J. and Werner, R. (1987a). Bell’s inequalities and quantum field theory, I, General setting, Journal of Mathematical Physics 28, 2440–2447.MATHCrossRefADSMathSciNetGoogle Scholar
  27. Summers, S. J. and Werner, R. (1987b). Maximal violation of Bell’s inequalities is generic in quantum field theory, Communications in Mathematical Physics 110, 247–259.MATHCrossRefADSMathSciNetGoogle Scholar
  28. Summers, S. J. and Werner, R. (1988). Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions, Annales de l’Institut Henri Poincaré - Physique théorique 49, 215–243.MATHMathSciNetGoogle Scholar
  29. van Fraassen, B. C. (1982). The Charybdis of realism: Epistemological implications of Bell’s inequalities, Synthese 52, 25–38.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceLoránd Eötvös UniversityBudapest 112Hungary
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations