Algebraic Approach to the Hulthen Potential
Article
First Online:
Received:
Accepted:
- 58 Downloads
- 13 Citations
Abstract
In this paper the energy eigenvalues and the corresponding eigenfunctions are calculated for Hulthen potential. Then we obtain the ladder operators and show that these operators satisfy SU(2) commutation relation.
Keywords
Hulthen potential ladder operators dynamical symmetryPreview
Unable to display preview. Download preview PDF.
References
- Arima, A. and Iachello, F. (1974). Annals of Physics 99, 253.CrossRefADSGoogle Scholar
- Cooper, I. L. (1993). Journal of Physics A: Mathematical and General 26, 1601.MATHCrossRefADSMathSciNetGoogle Scholar
- Dong, S. H. (2002a). Canadian Journal of Physics 80, 129.CrossRefADSGoogle Scholar
- Dong, S. H. (2002b). Zeitschrift fur Physikalische Chemie 216, 103.CrossRefGoogle Scholar
- Dong, S. H. (2003). Applied Mathematics Letters 16, 199.MATHCrossRefMathSciNetGoogle Scholar
- Dong, S. H. (2004). Computer and Mathematics with Application 47, 1037.Google Scholar
- Dong, S. and Dong, S. H. (2002a). Czechoslovak Journal of Physics 52, 753.CrossRefADSGoogle Scholar
- Dong, S. and Dong, S. H. (2002b). International Journal of Modern Physics E 11, 265.CrossRefADSGoogle Scholar
- Dong, S. H. and Lemus, R. (2002). International Journal of Quantum Chemistry 86, 265.CrossRefGoogle Scholar
- Dong, S. H. and Ma, Z. Q. (2002a). American Journal of Physics 70, 520.CrossRefMathSciNetGoogle Scholar
- Dong, S. H. and Ma, Z. Q. (2002b). International Journal of Modern Physics E 11, 155.CrossRefADSGoogle Scholar
- Dong, S. H., Lemus, R., and Frank, A. (2002). International Journal of Quantum Chemistry 86, 433.CrossRefGoogle Scholar
- Dong, S. H., Sun, G. H., and Tang, Y. (2003). International Journal of Modern Physics E 12, 809.CrossRefADSGoogle Scholar
- Eckart, C. (1930). Physical Review 35, 1303.CrossRefADSGoogle Scholar
- Flügge, S. (1999). Practical Quantum Mechanics, 2nd Printe, Springer, pp. 175–178.Google Scholar
- Hulthen, L. (1942a). Arkiv för Matematik, Astronomi och Fysik 28A, 5.Google Scholar
- Hulthen, L. (1942b). Arkiv för Matematik, Astronomi och Fysik 29B, 1.Google Scholar
- Iachello, F. and Ibrahim, M. (1998). Journal of Physical Chemistry A 102, 9427–9432.CrossRefGoogle Scholar
- Iachello, F. and Levine, R. D. (1995). Algebraic Theory of Molecules, Oxford University Press, New York [For a review of Lie algebraic methods in molecular spectroscopy].Google Scholar
- Iachello, F. and Oss, S. (1991). Physical Review Letters 66, 2976.CrossRefADSGoogle Scholar
- Iachello, F. and Oss, S. (1996). Journal of Chemical Physics 104, 6954.CrossRefADSGoogle Scholar
- Lebedev, N. N. (1972). Special Functions and Their Applications, Chapter 5 (Translated by Richard A. Silverman), Dover Publication, Inc., New York.MATHGoogle Scholar
- Perelomov, A. (1985). Generalized Coherent States and their Applications, New York, Springer.Google Scholar
- van Roosmalen, O. S., Benjamin, I., and Levine, R. D. (1984). Journal of Chemical Physics 81, 5986.CrossRefADSGoogle Scholar
- van Roosmalen, O. S., Dieperink, A. E., and Iachello, F. (1982). Chemical Physics Letters 85, 52.Google Scholar
- van Roosmalen, O. S., Iachello, F., Levine, R. D., and Dieperink, A. E. (1983). Journal of Chemical Physics 79, 2515.CrossRefADSMathSciNetGoogle Scholar
- Varshni, Y. P. (1990). Physical Review A 41, 4682.CrossRefADSMathSciNetGoogle Scholar
- Wybourne, R. G. (1974). Classical Groups for Physicists, New York, Wiley.MATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2006