International Journal of Theoretical Physics

, Volume 46, Issue 2, pp 319–382

Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations

Article

Abstract

We construct a sheaf-theoretic representation of quantum observables algebras over a base category equipped with a Grothendieck topology, consisting of epimorphic families of commutative observables algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the adaptation of the methodology of Abstract Differential Geometry (ADG), à la Mallios, in a topos-theoretic environment, and hence, the extension of the “mechanism of differentials” in the quantum regime. The process of gluing information, within diagrams of commutative algebraic localizations, generates dynamics, involving the transition from the classical to the quantum regime, formulated cohomologically in terms of a functorial quantum connection, and subsequently, detected via the associated curvature of that connection.

Key Words

quantum observables commutative algebras sheaves topos theory grothendieck topology adjunction adjoint functors cohomology of algebras connection curvature quantum dynamics differential geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, M., Grothendieck, A., and Verdier, J. L. (1972). Theorie de topos et cohomologie etale des schemas, Springer LNM 269 and 270, Springer-Verlag, Berlin.Google Scholar
  2. Bell, J. L. (1986). From absolute to local mathematics. Synthese 69.Google Scholar
  3. Bell, J. L. (1988). Toposes and Local Set Theories, Oxford University Press, Oxford.MATHGoogle Scholar
  4. Bell, J. L. (2001). Observations on category theory. Axiomathes 12.Google Scholar
  5. Bell, J. L. (1982). Categories, toposes and sets. Synthese 51(3).Google Scholar
  6. Bohr, N. (1958). Atomic Physics and Human Knowledge, John Wiley, New York.MATHGoogle Scholar
  7. Borceaux, F. (1994). Handbook of Categorical Algebra, Vols. 1–3, Cambridge U. P., Cambridge.Google Scholar
  8. Bub, J. (1997). Interpreting the Quantum World, Cambridge University Press, Cambridge.MATHGoogle Scholar
  9. Butterfield, J. and Isham, C. J. (1998). A topos perspective on the Kochen—Specker theorem: I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37, 2669.MATHCrossRefMathSciNetGoogle Scholar
  10. Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen—Specker theorem: II. Conceptual aspects and classical analogues. International Journal of Theoretical Physics 38, 827.MATHCrossRefMathSciNetGoogle Scholar
  11. Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of Physics 30, 1707.CrossRefMathSciNetGoogle Scholar
  12. Davis, M. (1977). A relativity principle in quantum mechanics. International Journal of Theoretical Physics 16, 867.CrossRefADSMathSciNetGoogle Scholar
  13. Dieks, D. J. (1993). Quantum mechanics and experience. Studies in History and Philosophy of Modern Physics, 23.Google Scholar
  14. Folse, H. J. (1985). The Philosophy of Niels Bohr. The Framework of Complementarity, North-Holland, New York.Google Scholar
  15. Kelly, G. M. (1971). Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge U. P., Cambridge.Google Scholar
  16. Lawvere, F. W. and Schanuel, S. H. (1997). Conceptual Mathematics, Cambridge University Press, Cambridge.MATHGoogle Scholar
  17. MacLane, S. (1971). Categories for the Working Mathematician, Springer-Verlag, New York.Google Scholar
  18. MacLane, S. and Moerdijk, I. (1992). Sheaves in Geometry and Logic, Springer-Verlag, New York.Google Scholar
  19. Mallios, A. (1998). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, vols. 1–2, Kluwer Academic Publishers, Dordrecht.Google Scholar
  20. Mallios, A. (2003). Remarks on “singularities.” Progress in Mathematical Physics, Columbus, F. (Ed.), Nova Science Publishers, Hauppauge, New York (invited paper), gr-qc/0202028.Google Scholar
  21. Mallios, A. (2004a). On localizing topological algebras. Contemporary Mathematics 341, gr-qc/0211032.Google Scholar
  22. Mallios, A. (2004b) Geometry and Physics Today, physics/0405112.Google Scholar
  23. Mallios, A. (2005a). On Algebra Spaces, preprint.Google Scholar
  24. Mallios, A. (2005b). Modern Differential Geometry in Gauge Theories: Vol. 1. Maxwell Fields, Birkhäuser, Boston.Google Scholar
  25. Mallios, A. (2006a). Quantum gravity and “singularities.” Note di Matematica, in press (invited paper), physics/0405111.Google Scholar
  26. Mallios, A. (2006b). Modern Differential Geometry in Gauge Theories: Vol. 2. Yang-Mills Fields, forthcoming by Birkhäuser, Boston.Google Scholar
  27. Mallios, A. and Raptis, I. (2004). C∞-Smooth Singularities Exposed: Chimeras of the Differential Spacetime Manifold, gr-qc/0411121.Google Scholar
  28. Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55, 231.MATHCrossRefMathSciNetGoogle Scholar
  29. Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology. Acta Appl. Math. 67, 59.MATHCrossRefMathSciNetGoogle Scholar
  30. Raptis, I. (2001). Presheaves, Sheaves, and their Topoi in Quantum Gravity and Quantum Logic, gr-qc/0110064.Google Scholar
  31. Rawling, J. P. and Selesnick, S. A. (2000). Orthologic and quantum logic. Models and computational elements. Journal of the Association for Computing Machinery 47, 721.MathSciNetGoogle Scholar
  32. Selesnick, S. A. (2004). Quanta, Logic and Spacetime (2nd. ed), World Scientific.Google Scholar
  33. Takeuti, G. (1978). Two applications of logic to mathematics. Mathematical Society of Japan 13, Kano Memorial Lectures 3.Google Scholar
  34. Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1, Van Nostrand, Princeton, New Jersey.Google Scholar
  35. Zafiris, E. (2001). Probing quantum structure through Boolean localization systems for measurement of observables. International Journal of Theoretical Physics 39(12).Google Scholar
  36. Zafiris, E. (2004a). Boolean coverings of quantum observable structure: A setting for an abstract differential geometric mechanism. Journal of Geometry and Physics 50, 99.MATHCrossRefADSMathSciNetGoogle Scholar
  37. Zafiris, E. (2004b). Quantum Event Structures from the perspective of Grothendieck Topoi. Foundations of Physics 34(7).Google Scholar
  38. Zafiris, E. (2004c). Interpreting observables in a quantum world from the categorial standpoint. International Journal of Theoretical Physics 43(1).Google Scholar
  39. Zafiris, E. (2006). Generalized topological covering systems on quantum events structures. Journal of Physics A: Mathematical and General 39.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of Athens, PanepistimioupolisAthensGreece

Personalised recommendations