International Journal of Theoretical Physics

, Volume 46, Issue 3, pp 637–651 | Cite as

Sensitive Response of the Quantum Entropies to Jaynes-Cummings Model in Presence of a Second Harmonic Generation

  • M. Sebawe Abdalla
  • M. Abdel-Aty
  • A.-S. F. Obada
Article

Abstract

The behavior of a modified Jaynes-Cummings Hamiltonian model (two-level atom in interaction with an electromagnetic field) in the presence of degenerate parametric amplification is introduced. We have examined two different cases, one when the field frequency ω is not equal to the splitting photon frequency ε for which the off-resonance case is considered. In the second case we have taken each frequencies to be equal (ω = ε) and considered the system to be at exact resonance. The wave function for both cases is obtained and the result used to calculate the density matrix from which we manage to discuss the field entropy as well as the phase entropy. It is shown that the system is sensitive to any change in the splitting photon frequency ε.

Keywords

JC model-parametric amplifier entropy squeezing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M. S., Hassan, S. S., and Abdel-Aty, M. (2005). Entropic uncertainty in the Jaynes Cummings model in presence of a second harmonic generation. Optics Communications 244, 431.CrossRefADSGoogle Scholar
  2. Araki, H. and Lieb, E. (1970). Entropy inequalities. Communications in Mathematical Physics 18, 160.CrossRefADSMathSciNetGoogle Scholar
  3. Bell, J. S. (1965). On the Einstein-Podolsky-Rosen paradox. Physics (Long Island City, New York) 1, 195.Google Scholar
  4. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., and Wootters, W. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895.MATHCrossRefADSMathSciNetGoogle Scholar
  5. Bennett, C. H. and Wiesner, S. J. (1992). Communication via one and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters 69, 2881.MATHCrossRefADSMathSciNetGoogle Scholar
  6. Bialynicki-Birula, I. and Mycielski, J. (1975). Uncertainty relations for information entropy. Communications in Mathematical Physics 44, 129.CrossRefADSMathSciNetGoogle Scholar
  7. Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J. M., and Haroche, S. (1996). Quantum Rabi oscillation: a direct test of field quantization in a cavity. Physical Review Letters 76, 1800.CrossRefADSGoogle Scholar
  8. Deutsch, D. L. (1983). Uncertainty in quantum measurements. Physical Review Letters 50, 631.CrossRefADSMathSciNetGoogle Scholar
  9. Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777.MATHCrossRefADSGoogle Scholar
  10. Ekert, A. K. (1991). Quantum cryptography based on Bell's theorem. Physical Review Letters 67, 661.MATHCrossRefADSMathSciNetGoogle Scholar
  11. Greenberger, D. M., Horne, M. A., and Zeilinger, A. (1990). Bell's theorem without inequalities. American Journal of Physics 58, 1131 (1990).CrossRefADSMathSciNetGoogle Scholar
  12. Haroche, S. and Raimond, J. M. (1994). In Cavity Quantum Electrodynamics, Berman, P. eds., Academic Press, New York, p. 123.Google Scholar
  13. Jaynes, E. T. and Cummings, F. W. (1963). Comparison of quantum and semiclassical radiation theory with application to the beam maser. Proceedings of the IEEE 51, 89.CrossRefGoogle Scholar
  14. Maassen, H. and Uffink, J. B. M. (1988). Generalized entropic uncertainty relations. Physical Review Letters 60, 1103.CrossRefADSMathSciNetGoogle Scholar
  15. Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge.MATHGoogle Scholar
  16. Obada, A.-S. F., Abdel-hafez, A. M., and Abdel-Aty, M. (1998). Phase properties of a Jaynes-Cummings model with Stark shift and Kerr medium. European Physics Jorunal D 3, 289.CrossRefADSGoogle Scholar
  17. Pan, J. W., Bouwmeester, D., Daniell, M., Weinfurter, H., and Zeilinger, A. (2000). Experimental test of quantum nonlocality in threephoton reenberger-Horne-Zeilinger entanglement. Nature (London) 403, 515.CrossRefADSGoogle Scholar
  18. Pegg, D. T. and Barnett, S. M. (1989). Phase properties of the quantized single-mode electromagnetic field. Physical Review A 39, 1065.CrossRefADSGoogle Scholar
  19. Phoenix, S. J. D. and Knight, P. L. (1988). Fluctuations and entropy in models of quantum optical resonance. Annals of Physics (New York) 186, 381.MATHCrossRefADSGoogle Scholar
  20. Phoenix, S. J. D. and Knight, P. L. (1991a). Establishment of an entangled atom-field state in the Jaynes-Cummings model. Physical Review A 44, 6023.CrossRefADSGoogle Scholar
  21. Phoenix, S. J. D. and Knight, P. L. (1991b). “Comment on” Collapse and revival of the state vector in the Jaynes-cummings Model. Physical Review Letters 66, 2833.CrossRefADSGoogle Scholar
  22. Puri, R. R. (2001). Mathematical methods of quantum optics. Springer Series in Optical Sciences Vol. 79, Chapters 7, 8.Google Scholar
  23. Raimond, J. M., Brune, M., and Haroche, S. (2001). Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics 73, 565.CrossRefADSMathSciNetGoogle Scholar
  24. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.-M., and Haroche, S. (1999). Operation of a quantum phase gate in cavity QED. Physics Review Letters 83, 5166.CrossRefADSGoogle Scholar
  25. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.-M., and Haroche, S. (2000). Step-by-step engineered multiparticle entanglement. Science 16, 2024.CrossRefADSGoogle Scholar
  26. Sackett, C. A., Kielpinski, D., King, B. E., Langer, C., Meyer, V., Myatt, C. J., Rowe, M., Turchette, Q. A., Itano, W. M., Wineland, D. J., and Monro, (2000). Experimental entanglement of four particles. Nature (London) 404, 256.CrossRefADSGoogle Scholar
  27. Steane, A. (1996). Error correcting codes in quantum theory. Physical Review Letters 77, 793.MATHCrossRefADSMathSciNetGoogle Scholar
  28. Van Enk, S. J., Cirac, J. I., and Zoller, P. (1997). Ideal quantum communication over noisy channels, a quantum optical implementation. Physical Review Letters 78, 4293.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2007

Authors and Affiliations

  • M. Sebawe Abdalla
    • 1
  • M. Abdel-Aty
    • 2
  • A.-S. F. Obada
    • 3
  1. 1.Mathematics Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceSouth Valley UniversitySohagEgypt
  3. 3.Mathematics Department, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt

Personalised recommendations