Advertisement

International Journal of Theoretical Physics

, Volume 45, Issue 12, pp 2350–2376 | Cite as

Spacetime Topology from the Tomographic Histories Approach: Part II

  • Ioannis Raptis
  • Petros Wallden
  • Romàn R. Zapatrin
Article

Abstract

As an inverse problem, we recover the topology of the effective spacetime that a system lies in, in an operational way. This means that from a series of experiments we get a set of points corresponding to events. This continues the previous work done by the authors. Here the relativistic case is considered. The existence of upper bound in the speed of transfer of matter and information induces a partial order on the set of events. While the actual partial order is not known in our operational set up, the grouping of events to (unordered) subsets corresponding to possible histories, is given. From this we recover the partial order up to certain ambiguities that are then classified. Finally two different ways to recover the topology are sketched and their interpretation is discussed.

Keywords

quantum gravity decoherent histories spacetime topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour, J. (1999). The End of Time. Oxford University Press, London, Weidenfeld and Nicolson; New York.Google Scholar
  2. Breslav, R. Private communicationGoogle Scholar
  3. Brightwell, G. and Gregory, R. (1991). The Structure of Random Discrete SpaceTime. Physical Review Letters 66, 260–263.zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. Gell-Mann, M. and Hartle, J. (1990a). Alternative decohering histories in quantum mechanics. In Phua, K. K. and Yamaguchi, Y., eds., Proceedings of the 25th International Conference on High Energy Physics, Singapore, August, 2–8, 1990. World Scientific, Singapore.Google Scholar
  5. Gell-Mann, M. and Hartle, J. (1990b). Quantum mechanics in the light of quantum cosmology. In Kobayashi, S., Ezawa, H., Murayama, Y., and Nomura, S., eds., Proceedings of the Third International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, pp. 321–343. Physical Society of Japan, Tokyo.Google Scholar
  6. Gell-Mann, M. and Hartle, J. (1990c). Quantum mechanics in the light of quantum cosmology. In Zurek, W. ed., Complexity, Entropy and the Physics of Information, SFI Studies in the Science of Complexity, Vol. VIII, pp. 425–458. Addison-Wesley, Reading.Google Scholar
  7. Gell-Mann, M. and Hartle, J. (1992) Classical equations for quantum systems. UCSB preprint UCSBTH-91-15.Google Scholar
  8. Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics 36, 219.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Halliwell, J. (1999). Somewhere in the Universe: Where is the information stored. Physical Review D60, 105031.MathSciNetADSGoogle Scholar
  10. Hartle, J. (1991a). The quantum mechanics of cosmology. In Coleman, S., Hartle, P., Piran, T., and Weinberg, S., eds., Quantum Cosmology and Baby Universes. World Scientific, Singapore.Google Scholar
  11. Hartle, J. (1991b). Spacetime grainings in nonrelativistic quantum mechanics. Physical Revew D44, 3173.MathSciNetCrossRefADSGoogle Scholar
  12. Hartle, J. (1993). Spacetime quantum mechanics and the quantum mechanics of spacetime. In Proceedings on the 1992 Les Houches School, Gravitation and Quantisation.Google Scholar
  13. Isham, C. J. (1994). Journal of Mathematical Physics 35, 2157 [arXiv:gr-qc/9308006].Google Scholar
  14. Major, S., Rideout, D., and Surya, S. (2005). Spatial Hypersurfaces in Causal Set Cosmology, eprint gr-qc/0506133.Google Scholar
  15. Omnès, R. (1988a). Logical reformulation of quantum mechanics, I. Foundations. Journal of Statistical Physics 53, 893.CrossRefGoogle Scholar
  16. Omnès, R. (1988b). Logical reformulation of quantum mechanics. II. Interferences and the Einstein-Podolsky-Rosen experiment. Journal of Statistical Physics 53, 933.CrossRefGoogle Scholar
  17. Omnès, R. (1988c). Logical reformulation of quantum mechanics. III. Classical limit and irreversibility. Journal of Statistical Physics 53, 957.CrossRefGoogle Scholar
  18. Omnès, R. (1989). Logical reformulation of quantum mechanics. IV. CTRL Projectors in semiclassical physics. Journal of Statistical Physics 57, 357.MathSciNetCrossRefGoogle Scholar
  19. Omnès, R. (1990). From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics. Annals of Physics (NY) 201, 354.Google Scholar
  20. Omnès, R. (1992). Consistent interpretations of quantum mechanics. Reviews of Modern Physics 64, 339.MathSciNetCrossRefADSGoogle Scholar
  21. Raptis, I. (2000). Algebraic quantization of causal sets. International Journal of Theoretical Physics 39, 1233; eprint gr-qc/9906103Google Scholar
  22. Raptis, I., Wallden, P., and Zapatrin, R. R. (2005). Spacetime topology from the tomographic histories approach, Part I: Non-Relativistic Case, to appear in IJTP volume proceedings of Glafka, gr-qc/0506088.Google Scholar
  23. Sorkin, R. D. (1991a). Finitary substitute for continuous topology. International Journal of Theoretical Physics 30, 923–947MathSciNetCrossRefGoogle Scholar
  24. Sorkin, R. D. (1991b). Spacetime and causal sets. In D’Olivo, J. C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M. P., Urrutia, L. F., and Zertuche, F., eds., Relativity and Gravitation: Classical and Quantum, pp. 150–173. World Scientific, Singapore.Google Scholar
  25. Wheeler, J. A. (1990). It from Bit. In Zurek, W. H., ed., Complexity, entropy, and the physics of information: the proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, Santa-Fe Institute, New Mexico, Addison-Wesley.Google Scholar
  26. Zapatrin, R. R. (1993). Pre-Regge calculus: topology via logic. International Journal of Theoretical Physics 32, 779–799CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Ioannis Raptis
    • 1
    • 2
  • Petros Wallden
    • 3
  • Romàn R. Zapatrin
    • 4
  1. 1.EU Marie Curie Reintegration Postdoctoral Research Fellow, Algebra and Geometry Section, Department of MathematicsUniversity of AthensAthensGreece
  2. 2.Visiting Researcher, Theoretical Physics Group, Blackett LaboratoryImperial College of Science, Technology and MedicineLondonUK
  3. 3.Theoretical Physics Group, Physics DepartmentImperial CollegeLondonUK
  4. 4.Department of Information ScienceThe State Russian MuseumSt.PetersburgRussia

Personalised recommendations