Advertisement

International Journal of Theoretical Physics

, Volume 45, Issue 11, pp 1993–2050 | Cite as

New Electroweak Formulation Fundamentally Accounting for the Effect Known as “Maximal Parity-Violation”

  • G. Ziino
Article

Abstract

The electroweak scheme is wholly recast, in the framework of a relativistic quantum field formalism being a covariant fermion–antifermion extension of the usual one for massive spin-\(\frac{1}{2}\) point fermions. The new formalism is able to reread the “maximal P-violation” effect in a way restoring P and C symmetries themselves: it provides a natural “chiral field” approach, which gives evidence of the existence of a pseudoscalar (extra) charge variety anticommuting with the scalar (ordinary) one and just underlying the “maximally P-violating” phenomenology. Its zero-mass limit leads to a strict “chiral” particle theory, which remodels any massless spin-\(\frac{1}{2}\) fermion and corresponding antifermion as two mere pseudoscalar-charge eigenstates being the simple mirror images of each other. On such a basis, the (zero-mass) electroweak primary fermions are all redefined to be (only left-handed) “chiral” particles (with right-handed complements just standing for their antiparticles) and to carry at most scalar charges subjected as yet to a maximal uncertainty in sign: it is only by acquiring mass, and by gaining an extra helicity freedom degree, that they now may also manifest themselves as “Dirac” particles, with sharp scalar-charge eigenvalues. The fermion-mass appearance is thus made herein a dynamical condition strictly necessary to obtain actual superselected scalar-charge (and first, electric-charge) eigenstates. A pure “internal” mass-generating mechanism, relying only on would-be-Goldstone bosons (even to yield fermion masses) and no longer including an “external” Higgs contribution, is adopted accordingly. This is shown to be a self-consistent mechanism, which still maintains both renormalizability and unitarity. It involves a P-breaking in the neutral-weak-current sector (due to the Weinberg mixing) while it leaves the charged-current couplings truly P-invariant even in the presence of a (standardly parametrized) CP-violation.

Keywords

origin of “maximally parity-violating” phenomenology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, I. J. R. and Hey, A. J. G. (1984). Gauge Theories in Particle Physics, Adam Hilger, Bristol, pp. 11–16.zbMATHGoogle Scholar
  2. Ambler, E., Hayward, R. W., Hoppes, D. D., Hudson, R. R., and Wu, C. S. (1957). Physical Review 105, 1413.CrossRefADSGoogle Scholar
  3. Barut, A. O. (1972). Physics Letters B 38, 97.CrossRefADSGoogle Scholar
  4. Barut, A. O. (1973). Physics Letters B 46, 81.MathSciNetCrossRefADSGoogle Scholar
  5. Barut, A. O. (1982). Foundations of Physics 13, 7.CrossRefADSGoogle Scholar
  6. Barut, A. O. and Ziino, G. (1993). Modern Physics Letters A 8, 1011.CrossRefADSGoogle Scholar
  7. Cheng, T. P. and Li, L. F. (1984). Gauge Theory of Elementary Particle Physics, Oxford University Press, New York, p. 246.Google Scholar
  8. Costa de Beauregard, O. (1982). Foundations of Physics 12, 861.MathSciNetCrossRefADSGoogle Scholar
  9. Costa de Beauregard, O. (1984). In The Wave-Particle Dualism, S. Diner et al. eds. D. Reidel, p. 485.Google Scholar
  10. Feynman, R. P. (1949). Physical Review 76, 769.zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. Feynman, R. P. and Gell-Mann, M. (1958). Physical Review 109, 193.zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. Glashow, S. L. (1961). Nuclear Physics 22, 579.CrossRefADSGoogle Scholar
  13. Goldstone, J. (1961). Nuovo Cimento 19, 154zbMATHMathSciNetGoogle Scholar
  14. Goldstone, J., Salam, A., and Weinberg, S. (1962). Physical Review 127, 965.zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. Halzen, F. and Martin, A. D. (1984). Quarks and Leptons, J. Wiley & Sons.Google Scholar
  16. Kobayashi, M. and Maskawa, M. (1973). Progress of Theoretical Physics 49, 652.CrossRefADSGoogle Scholar
  17. Landau, L. D. (1957). Nuclear Physics 3, 127.MathSciNetCrossRefADSGoogle Scholar
  18. Lee, T. D. and Yang, C. N. (1956). Physical Review 104, 254.CrossRefADSGoogle Scholar
  19. Lee, T. D. and Yang, C. N. (1957). Physical Review 105, 1671.MathSciNetCrossRefADSGoogle Scholar
  20. Majorana, E. (1937). Nuovo Cimento 14, 171.zbMATHGoogle Scholar
  21. Marshak, R. E. and Sudarshan, E. C. G. (1958). Physical Review 109, 1860.CrossRefADSGoogle Scholar
  22. Mohapatra, R. N. and Pati, J. C. (1975). Physical Review D 11, 566.CrossRefADSGoogle Scholar
  23. Narlikar, J. V. and Padmanabhan, T. (1986). Gravity, Gauge Theories and Quantum Cosmology, D. Reidel, p. 129.Google Scholar
  24. Recami, E. and Ziino, G. (1976). Nuovo Cimento A 33, 205.ADSGoogle Scholar
  25. Ross, G. G. (1993). Contemporary Physics 34, 79.ADSGoogle Scholar
  26. Sakurai, J. J. (1958). Nuovo Cimento 7, 649.Google Scholar
  27. Salam, A. (1957). Nuovo Cimento 5, 299.MathSciNetCrossRefGoogle Scholar
  28. Salam, A. (1968). In Elementary Particle Theory, N. Svartholm ed. Almquist and Wiksell, Stockholm, p. 367.Google Scholar
  29. Stüeckelberg, E. C. G. (1948). Physical Review 74, 218.Google Scholar
  30. Tiomno, J. (1955). Nuovo Cimento 1, 226.zbMATHMathSciNetGoogle Scholar
  31. Weinberg, S. (1967). Physical Review Letters 19, 1264.CrossRefADSGoogle Scholar
  32. Weyl, H. (1929). Zeitschrift fur Physik 56, 330.zbMATHCrossRefADSGoogle Scholar
  33. Ziino, G. (1996). International Journal of Modern Physics A 11, 2081.zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. Ziino, G. (2000). International Journal of Theoretical Physics 39, 51.MathSciNetCrossRefGoogle Scholar
  35. Ziino, G. (2003). Hadronic Journal 26, 655.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche e AstronomicheUniversit` di PalermoPalermoItaly

Personalised recommendations