Advertisement

International Journal of Theoretical Physics

, Volume 46, Issue 3, pp 576–583 | Cite as

Why have we Never Observed the Massless Charged Particle?

  • Li XiangEmail author
  • You-Gen Shen
Article

Abstract

In this paper we try to explore the possible contact between quantum gravity and the least mass of a charged particle in de Sitter spacetime. The effect of Generalized Uncertainty Principle (GUP) on the thermodynamics of de Sitter spacetime is discussed in a heuristic manner. We find a maximal entropy/probability that corresponds to the absence of charge of a massless particle. Furthermore, the holographic principle provides a possible lower limit to the mass of a charged particle.

Keywords

electronic charge generalized uncertainty principle cosmological constant holographic principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [1] Adler, R. J., Chen, P. S., and Santiago, D. I. (2001). The generalized uncertainty principle and black hole remnants. General Relativity and Gravity 33, 2101.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    [2] Ahluwalia, D. V. (2000). Wave-Particle duality at the Planck scale: Freezing of neutrino oscillations. Physics Letters A 275, 31.CrossRefADSGoogle Scholar
  3. [3]
    [3] Banks, T. (2000). Cosmological Breaking of Supersymmetry? hep-th/0007146.Google Scholar
  4. [4]
    [4] Bousso, R. (2000). Positive vacuum energy and the N-bound. Journal of High Energy Physics 0011, 038.CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    [5] Chang, L. N., Minic, D., Okmura, N., and Takeuchi, T. (2002). The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Physical Review D 65, 125028.CrossRefADSGoogle Scholar
  6. [6]
    [6] Cohen, A. G., Kaplan, D. B., and Nelson, A. E. (1999). Effective field theory, black Holes, and the cosmological constant. Physical Review Letter 82, 4971.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. [7]
    [7] Garay, L. J. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A 10, 145.CrossRefADSGoogle Scholar
  8. [8]
    [8] Gross, D. J. and Mende, P. F. (1988). String theory beyond the Planck scale. Nuclear Physics B 303, 407.CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    [9] Horava, P. and Minic, D. (2000). Probable values of the cosmological constant in a holographic theory. Physical Review Letter 85, 1610.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    [10] Kazinski, P. O. and Sharapov, A. A.(2003). Radiation reaction for a massless charged particle. Classical and Quantum Gravity 20, 2715.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    [11] Kempf, A., Mangano, G., and Mann, R. B. (1995). Hilbert space representation of the minimal length uncertainty relation. Physical Review D 52, 1108.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    [12] Li, X. (2002). Black hole entropy without brick walls. Physics Letters B 540, 9.zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    [13] Li, X. and Shen, Y. G. (2004). Probable ratio of the vacuum energy in a Schwarzchild-de Sitter space. Physics Letters A 324, 255.CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    [14] Rama, S. K. (2001). Some consequences of the generalised uncertainty principle: Statistical mechanical, cosmological, and varying speed of light. Physics Letters B 519, 103.zbMATHCrossRefADSGoogle Scholar
  15. [15]
    [15] Susskind, L. (1995). The world as a hologram. Journal of Mathmatical Physcis 36, 6377.zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    [16] Thomas, S. (2002). Holographic vacuum energy. Physical Review Letter 89, 081301.CrossRefADSGoogle Scholar
  17. [17]
    [17] 't Hooft, G. (1993). Dimensional reduction in quantum gravity. gr-qc/9310026.Google Scholar
  18. [18]
    [18] Veneziano, G. (1986). A string nature needs just two constants. Europhysic Letter 2, 199.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiP. R. China

Personalised recommendations