International Journal of Theoretical Physics

, Volume 46, Issue 3, pp 562–575 | Cite as

Spinning Particles in Spacetimes with Torsion

  • Neophytos Messios
Article

Abstract

A novel analysis of the Mathisson-Papapetrou-Dixon equations is presented employing mathematical tools that do not rely on the torsion free geometries used in previous literature. A system of differential algebraic equations that can be used to describe the motion of spinning particles in an arbitrary geometry is derived. The curvature in these equations can involve non-Riemannian contributions. Subsequently, this particular system of equations can accommodate modification to geodesic motion from both scalar fields and the spin of the particle.

Key Words

Gravity spinning particles relativistic dynamics torsion Brans-Dicke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benn, I. M. and Tucker, R. W. (1987). An Introduction to Spinors and Geometry, Adam Hilger, Bristol and New York.Google Scholar
  2. Brans, C. H., Dicke, R. H. (1961). Physical Review 124, 925.MATHCrossRefADSMathSciNetGoogle Scholar
  3. Dereli, T. and Tucker, R. W. (2001). On the Motion of Matter in Spacetime, gr-qc/0107017.Google Scholar
  4. Dereli, T. and Tucker, R. W. (1982). Physical Letters B110, 206.ADSMathSciNetGoogle Scholar
  5. Dicke, R. H. (1962). Physical Review 125, 2163.MATHCrossRefADSMathSciNetGoogle Scholar
  6. Dirac, P. A. M. (1973). Proceedings of the Royal Society A333, 403.Google Scholar
  7. Dixon, G. W. II (1964). Nuovo Cimento XXXIV, 317.MathSciNetGoogle Scholar
  8. Dixon, G. W. II (1965). Nuovo Cimento XXXVIII, 1616.MathSciNetGoogle Scholar
  9. Dixon, G. W. (1970). Proceedings of the Royal Society of London A314, 499.Google Scholar
  10. Dixon, G. W. (1970). Proceedings of the Royal Society of London A319, 509.Google Scholar
  11. Dixon, G. W. (1973). Journal of General Relaivity and Gravity 4, 193.MathSciNetGoogle Scholar
  12. Dixon, G. W. (1974). Philosophical Transactions of the Royal Society of London A277, 59.ADSMathSciNetGoogle Scholar
  13. Ehlers, J. (1971). General relativity and kinetic theory in relativity and cosmology. In: Sachs, B. K. (Ed.), Proceedings of the International School of Physics “Enrico Fermi”, Course XLV11, Academic Press.Google Scholar
  14. Mathisson, M. (1937). Acta Physica Polonica 6, 163.MATHGoogle Scholar
  15. Mohseni, M., Tucker, R. W., and Wang, C. (2001). Classical and Quantum Gravity 18, 3007.MATHCrossRefADSMathSciNetGoogle Scholar
  16. Papapetrou, A. (1951). Proceedings of the Royal Society of London A209, 248.Google Scholar
  17. Tod, K. and De Felice, F. II (1976) Nuovo Cimento 34B, 365.ADSGoogle Scholar
  18. Tucker, R. W. (2004). Proceedings of the Royal Society of London A 460, 2819.Google Scholar
  19. Tucker, R. W. and Wang, C. (1995) Classification of Quantum Gravity 12, 2587.MATHCrossRefADSMathSciNetGoogle Scholar
  20. Tucker, R. W. and Wang, C. (1997). Non-Riemannian Gravitational Interactions, Banach Center Publications, Institute of Mathematics, Polish Academy of Science, Warsaw, Mathematics of Gravitation, Part II, Vol. 41, p. 263 (gr-qc/9608055)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Neophytos Messios
    • 1
  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations