Advertisement

International Journal of Theoretical Physics

, Volume 45, Issue 8, pp 1589–1611 | Cite as

Glafka 2004: Spacetime Topology from the Tomographic Histories Approach

I: Non-Relativistic Case
  • Ioannis Raptis
  • Petros Wallden
  • Romàn R. Zapatrin
Article
  • 37 Downloads

Abstract

The tomographic histories approach is presented. As an inverse problem, we recover in an operational way the effective topology of the extended configuration space of a system. This means that from a series of experiments we get a set of points corresponding to events. The difference between effective and actual topology is drawn. We deduce the topology of the extended configuration space of a non-relativistic system, using certain concepts from the consistent histories approach to Quantum Mechanics, such as the notion of a record. A few remarks about the case of a relativistic system, preparing the ground for a forthcoming paper sequel to this, are made in the end.

Key Words

spacetime topology consistent histories causal sets classical and quantum gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, Y. and Vaidman, L. (2000). Sending signals to space-like separated regions. Paper contribution to the shape Mysteries and Paradoxes in Quantum Mechanics, Lake Garda, quant-ph/0102083.Google Scholar
  2. Breslav, R., Parfionov, G. N., and Zapatrin, R. R. (1999). Topology measurement within the histories approach. Hadronic Journal 22, 225.MATHMathSciNetGoogle Scholar
  3. Gell-Mann, M. and Hartle, J. (1990a). Alternative decohering histories in quantum mechanics. In Phua, K. K. and Yamaguchi, Y., eds., Proceedings of the 25th International Conference on High Energy Physics, Singapore, August, 2–8, 1990. World Scientific, Singapore.Google Scholar
  4. Gell-Mann, M. and Hartle, J. (1990b). Quantum mechanics in the light of quantum cosmology. In Kobayashi, S., Ezawa, H., Murayama, Y., and Nomura, S., eds., Proceedings of the Third International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, pp. 321–343. Physical Society of Japan, Tokyo.Google Scholar
  5. Gell-Mann, M. and Hartle, J. (1990c). Quantum mechanics in the light of quantum cosmology. In Zurek, W., eds., Complexity, Entropy and the Physics of Information, SFI Studies in the Science of Complexity, Vol. VIII, pp. 425–458, Addison-Wesley, Reading.Google Scholar
  6. Gell-Mann, M. and Hartle, J. (1992). Classical equations for quantum systems. UCSB preprint UCSBTH-91-15.Google Scholar
  7. Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics 36, 219.MATHMathSciNetCrossRefGoogle Scholar
  8. Halliwell, J. (1999). Somewhere in the universe: Where is the information stored. Physical Review D60, 105031.MathSciNetADSGoogle Scholar
  9. Hartle, J. (1991a). The quantum mechanics of cosmology. In Coleman, S., Hartle, P., Piran, T., and Weinberg, S., eds., Quantum Cosmology and Baby Universes, World Scientific, Singapore.Google Scholar
  10. Hartle, J. (1991b). Spacetime grainings in nonrelativistic quantum mechanics. Physical Review D44, 3173.MathSciNetADSGoogle Scholar
  11. Hartle, J. (1993). Spacetime quantum mechanics and the quantum mechanics of spacetime. In Proceedings on the 1992 Les Houches School, Gravitation and Quantisation.Google Scholar
  12. Isham, C. J. (1994). Quantum logic and the histories approach to quantum theory. Journal of Mathematical Physics 35, 2157.MATHMathSciNetCrossRefADSGoogle Scholar
  13. Isham, C. J. and Linden, N. (1994). Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory. Journal of Mathematical Physics 35, 5452, gr-qc/9405029.MATHMathSciNetCrossRefADSGoogle Scholar
  14. Omnès, R. (1988a). Logical reformulation of quantum mechanics, I. Foundations. Journal of Statistical Physics 53, 893.CrossRefGoogle Scholar
  15. Omnès, R. (1988b). Logical reformulation of quantum mechanics. II. Interferences and the Einstein-Podolsky-Rosen experiment. Journal of Statistical Physics 53, 933.CrossRefGoogle Scholar
  16. Omnès, R. (1988c). Logical reformulation of quantum mechanics. III. Classical limit and irreversibility. Journal of Statistical Physics 53, 957.CrossRefGoogle Scholar
  17. Omnès, R. (1989). Logical reformulation of quantum mechanics. IV. CTRL Projectors in semiclassical physics. Journal of Statistical Physics 57, 357.MathSciNetCrossRefGoogle Scholar
  18. Omnès, R. (1990). From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics. Annals of Physics (NY) 201, 354.CrossRefADSGoogle Scholar
  19. Omnès, R. (1992). Consistent interpretations of quantum mechanics. Reviews of Modern Physics 64, 339.MathSciNetCrossRefADSGoogle Scholar
  20. Raptis, I., Wallden, P., and Zapatrin, R. R. Spacetime topology from the ‘tomographic’ histories approach II: Relativistic Case (work in progress).Google Scholar
  21. Wheeler, J. A. (1964). Geometrodynamics. In De Witt, C. and De Witt, B. S., eds., Relativity, Groups and Topology, Gordon and Breach, London.Google Scholar
  22. Zapatrin, R. R. (1993). Pre-Regge calculus: Topology via logic. International Journal of Theoretical Physics 32, 779.CrossRefGoogle Scholar
  23. Zapatrin, R. R. (1994). Boolean machinery for quantum logics. International Journal of Theoretical Physics 33, 245.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ioannis Raptis
    • 1
    • 2
  • Petros Wallden
    • 2
  • Romàn R. Zapatrin
    • 3
  1. 1.Algebra and Geometry Section, Department of MathematicsUniversity of AthensAthensGreece
  2. 2.Theoretical Physics Group, Blackett LaboratoryImperial College of Science, Technology and MedicineLondonUK
  3. 3.Department of Information ScienceThe State Russian MuseumSt. PetersburgRussia

Personalised recommendations