International Journal of Theoretical Physics

, Volume 45, Issue 8, pp 1552–1588

Geometry and Physics Today



Geometry,” in the sense of the classical differential geometry of smooth manifolds (CDG), is put under scrutiny from the point of view of Abstract Differential Geometry (ADG). We explore potential physical implications of viewing things under the light of ADG, especially matters concerning the “gauge theories” of modern physics, when the latter are viewed (as they are actually regarded currently) as “physical theories of a geometrical character.” Thence, “physical geometry,” in connection with physical laws and the associated with them, within the background spacetime manifoldless context of ADG, “differentialequations, are also being discussed.


general relativity quantum field theory singularities gauge theories abstract differential geometry (ADG) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auyang, S. Y. (1995). How is Quantum Field Theory Possible? Oxford Univ. Press, Oxford.Google Scholar
  2. Baez, J. C. (Ed.) (1994). Knots and Quantum Gravity. Oxford Univ. Press, Oxford.MATHGoogle Scholar
  3. Bergmann, P. G. (1979). Unitary Field Theory: Geometrization of Physics or Physicalization of Geometry? In “The 1979 Berlin Einstein Symposium.” Lecture Notes in Physics, No 100. Springer-Verlag, pp. 84–88.Google Scholar
  4. Bogolubov, N. N., Logunov, A. A. and Todorov, I. T. (1975). Introduction to Axiomatic Quan/-tu/-m Field Theory. W.A. Benjamin, Reading, Mass.Google Scholar
  5. Bourbaki, N. (1970). Algèbre, Chap. 1–3. Hermann, Paris.Google Scholar
  6. Dugundji, J. (1966). Topology. Allyn and Bacon, Boston.MATHGoogle Scholar
  7. Feynman, R. P. (1992). The Character of Physical Law. Penguin Books, London.Google Scholar
  8. Finkelstein, D. R. (1997). Quantum Relativity. A Synthesis of the Ideas of Einstein and Heisenberg. Springer-Verlag, Berlin (2nd Cor. Print.).Google Scholar
  9. Grauert, H. and Remmert, R. (1984). Coherent Analytic Sheaves. Springer-Verlag, Berlin.MATHGoogle Scholar
  10. Isham, C. J. (1991). Canonical Groups and the quantization of geometry and topology. In A. Ashtekar and J. Stachel (eds.) “Conceptual Problems of Quantum Gravity.” Birkhäuser, Basel, pp. 351–400.Google Scholar
  11. Mallios, A. (1986). Topological Algebras. Selected Topics. North-Holland, Amsterdam. [This item is also quoted, for convenience, throughout the text, by TA].MATHGoogle Scholar
  12. Mallios, A. (1998a). On an axiomatic treatment of differential geometry via vector sheaves. Applications. Math. Japonica (Int. Plaza) 48, 93–180.MathSciNetMATHGoogle Scholar
  13. Mallios, A. (1998b). Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry, Vols. I (Chapts I–V), II (Chapts VI–XI). Kluwer, Dordrecht. [This is still quoted in the text, as VS].Google Scholar
  14. Mallios, A. (2002). Remarks on “singularities.” gr-qc/0202028.Google Scholar
  15. Mallios, A. (2004). On localizing topological algebras. Contemp. Math. 341, 79–95.Google Scholar
  16. Mallios, A. (2006) Quantum gravity and “singularities.” Note Mat. 25, 57–76.Google Scholar
  17. Mallios, A. (2005). Modern Differential Geometry in Gauge Theories. Vol.I: Maxwell Fields, Vol.II: Yang-Mills Fields. Birkhäuser, Boston, (2005/2006).Google Scholar
  18. Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality. Int. J. Theor. Phys. 40, 1885–1928.MathSciNetCrossRefMATHGoogle Scholar
  19. Mallios, A. and Raptis, I. (2002). Finitary vCech-de Rham cohomology: much ado without cc-smoothness. Ibid. 41, 1857–1992.MathSciNetMATHGoogle Scholar
  20. Mallios, A. and Raptis, I. (2003). Finitary, causal, and quantal vacuum Einstein gravity. Ibid. 42, 1479–1620.MathSciNetMATHGoogle Scholar
  21. Mallios, A. and Raptis, I. (2005). C-smooth singularities exposed: Chimeras of the differential spacetime manifold, research monograph (in preparation); gr-qc/0411121.Google Scholar
  22. Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55, 231–250.MathSciNetCrossRefMATHGoogle Scholar
  23. Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology. ibid. 67, 59–89.MathSciNetMATHGoogle Scholar
  24. Manin, Yu. I. (1981). Mathematics and Physics. Birkhäuser, Boston.Google Scholar
  25. Papatriantafillou, M. H. (2000). The category of differential triads. Bull. Greek Math. Soc. 44, 129–141.MathSciNetMATHGoogle Scholar
  26. Papatriantafillou, M. H. (2004). Initial and final differential structures in Proc. Intern. Conf. on “Topological Algebras and Applications” (ICTAA 2000), Rabat, Maroc. école Normale Supérieure, Takaddoum, Rabat, pp. 115–123.Google Scholar
  27. Papatriantafillou, M. H. (in preparation) Abstract Differential Geometry. A Categorical Perspective (book).Google Scholar
  28. Raptis, I. (2000). Finitary spacetime sheaves. Int. J. Theor. Phys. 39, 1703–1716.MathSciNetCrossRefMATHGoogle Scholar
  29. Rosinger, E. E. (1990) Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions. North-Holland, Amsterdam.Google Scholar
  30. Sharpe, R. W. (1997). Differential Geomerty. Cartan's Generalization of Klein's Erlangen Program. Springer–Verlag, New York.Google Scholar
  31. Smith, D. E. (1958). History of Mathematics, Vol. I. Dover Publications, New York.Google Scholar
  32. Sorkin, R. D. (1991). Finitary substitute for continuous topology. Int. J. Theor. Phys. 30, 923–947.MathSciNetCrossRefMATHGoogle Scholar
  33. Stachel, J. (1993). The other Einstein: Einstein contra field theory in M. Beller, R. S. Cohen, and J. Renn (eds.) “Einstein in Context”: Science in Context 6, 275–290. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  34. Weinstein, A. (1981). Symplectic geometry. Bull. Amer. Math. Soc. 5, 1–13.MathSciNetMATHCrossRefGoogle Scholar
  35. Weyl, H. (1949). Philosophy of Mathematics and Natural Sciences. Princeton Univ. Press, Princeton, N.J.Google Scholar
  36. Weyl, H. (1952). Space-Time-Matter. Dover Publications, New York.Google Scholar
  37. Wittgenstein, L. (1997). Tractatus Logico-Philosophicus. Routledge, London.Google Scholar
  38. Wittgenstein, L. (2003). Remarks on Aesthetics, Psychology and Religious Belief. Blackwell, London.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Algebra and Geometry Section, Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations