International Journal of Theoretical Physics

, Volume 45, Issue 6, pp 1166–1180 | Cite as

Relational Interpretation of the Wave Function and a Possible Way Around Bell’s Theorem

  • Thomas Filk


The famous “spooky action at a distance” in the EPR-scenario is shown to be a local interaction, once entanglement is interpreted as a kind of “nearest neighbor” relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the “nearest neighbor” relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, “position” becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the “weird” aspects, like the particle-wave duality, the non-locality of entanglement, or the “mystery” of the double-slit experiment, disappear. Furthermore, this picture circumvents the restrictions set by Bell’s inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.

Key Words

relational space relational interpretation of the wave function locality Bell’s theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour, J. B. and Bertotti, B. (1977). Nuovo Cimento B 38, 1.CrossRefADSGoogle Scholar
  2. Barbour, J. B. and Bertotti, B. (1982). Proceedings of the Royal Society of London A 382, 295.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. Born, M. (ed.) (1971). The Born-Einstein Letters Macmillan, London.Google Scholar
  4. Bruβ, D. (2001). Proceedings of the ICQI Rochester Conference, lanl e-print quant-ph/0110078.Google Scholar
  5. Clarke, S. (1716). A collection of papers which passed between the late learned Mr. Leibniz and Dr. Clarke in the years 1715–1716 relating to the principles of natural philosophy and religion.Google Scholar
  6. Coecke, B. (2000). The Logic of Entanglement. An Invitation. Research Report PRG-RR-01-12 Oxford University Computing Laboratory (available at
  7. Descartes, R. (1644). Principia Philosophiae, Apud Ludovicum Elzevirium, Amsterdam.Google Scholar
  8. deWitt, B. S. (1970). Quantum Mechanics and Reality Physics Today; Sept., 30–35.Google Scholar
  9. Everett, H. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics 29, 454.CrossRefADSMathSciNetGoogle Scholar
  10. Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics Addison Wesley, Reading, MA, Vol. III, Chapter 1.zbMATHGoogle Scholar
  11. Haag, R. (1990). Communication in Mathematical Physics 132, 245.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. Haag, R. (2004). Mind and Matter 2/2, 53.Google Scholar
  13. Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., and Rauch, H. (2003). Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45.CrossRefADSGoogle Scholar
  14. Hill, S. and Wootters, W. K. (1997). Physics Review Letters 78, 5022.CrossRefADSGoogle Scholar
  15. Horodecki, M., Horodecki, P., and Horodecki, R. (1996). Physics Letters A 223,1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. Leibniz, G. W. (1954). Principes de la Philosophie ou Monadologie Presse Universitaires de France, Paris.Google Scholar
  17. Mach, E. (1883). Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt (English The Science of Mechanics), F. A. Brockhaus, Leipzig.Google Scholar
  18. Penrose, R. (1972). In Magig without Magic, J. R. Klauder, ed. Freeman, San Francisco.Google Scholar
  19. Plesch, M. and Bužek, V. (2003). Physics Review A 67, 012322.CrossRefADSGoogle Scholar
  20. Requardt, M. (2000). Classical and Quantum Gravity 17, 2029.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. Rovelli, C. and Smolin, L. (1990). Loop space representation of quantum general relativity. Nuclear Physics B331 (1990) 80.ADSMathSciNetGoogle Scholar
  22. Rovelli, C. (2004). Quantum Gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.Google Scholar
  23. Sorkin, R. D. (1991). International Journal of Theoretical Physics 30, 323.CrossRefMathSciNetGoogle Scholar
  24. Weinberg, S. (2000). The Quantum Theory of Fields Cambridge University Press.Google Scholar
  25. Wootters, W. K. (1998). Physics Review Letters 80, 2245.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Thomas Filk
    • 1
    • 2
    • 3
  1. 1.Institute for Theoretical PhysicsUniversität FreiburgFreiburgGermany
  2. 2.Parmenides FoundationCapoliveriItaly
  3. 3.Institute for Frontier Areas in Psychology and Mental HealthFreiburgGermany

Personalised recommendations