International Journal of Theoretical Physics

, Volume 46, Issue 3, pp 548–552 | Cite as

Schrödinger Equation for An Extended Electron

Article
  • 67 Downloads

Abstract

A new quantum mechanical wave equation describing the dynamics of an extended electron is derived via Bohmian mechanics. The solution to this equation is found through a wave packet approach which establishes a direct correlation between a classical variable with a quantum variable describing the dynamics of the center of mass and the width of the electron wave packet. The approach presented in this paper gives a comparatively clearer picture than approaches using elaborative manipulation of infinite series of operators. It is shown that the new Schrödinger equation is free of any runaway solutions or any acausal responses.

Keywords

extended electron Sommerfeld–Page equation Bohmian mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, M. (1905). Theorie der Elektrizitat, Elektromagnetische Theorie der Strahlung, Vol II. Leipzig, Teubner.Google Scholar
  2. Ali, Md. M., Majumdar, A. S., and Home, D. (2002). Physics Letters A 304, 61.MATHCrossRefADSMathSciNetGoogle Scholar
  3. Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge.Google Scholar
  4. Bowman, G. E. (2002). Physics Letters A 298, 7.MATHCrossRefADSMathSciNetGoogle Scholar
  5. Colijn, C. and Vrscay, E. R. (2002). Physics Letters A 300, 334.MATHCrossRefADSMathSciNetGoogle Scholar
  6. Cook, R. J. (1984). American Journal of Physics 52, 894.CrossRefADSGoogle Scholar
  7. Datta, A., Ghose, P., and Samal, M. K. (2004). Physics Letters A 322, 277.CrossRefADSMathSciNetGoogle Scholar
  8. Denef, F., Raeymaekers, J., Studer, U. M., and Troost, W. (1997). Physical Review E 56, 3624.CrossRefADSGoogle Scholar
  9. Dias, N. C. and Prata, J. N. (2002). Physics Letters A 302, 261.MATHCrossRefADSMathSciNetGoogle Scholar
  10. Dürr, D., Goldstein, S., Tumulka, R., and Zanghi, N. (2004). Physical Review Letters 93, 090402. See references therein.CrossRefMathSciNetGoogle Scholar
  11. Falsaperla, P. and Fonte, G. (2003). Physics Letters A 316, 382.MATHCrossRefADSMathSciNetGoogle Scholar
  12. Griffiths, D. (2004). Introduction to Electrodynamics, Prentice Hall, N.Y. 3rd edn. See Chapter 11.Google Scholar
  13. Jackson, J. D. (1998). Classical Electrodynamics, Wiley, N. Y. 3rd edn. See Chapter 16.Google Scholar
  14. Kim, K.-J. and Sessler, A. M. (1998). 8th Workshop on Advanced Acceleration Concepts, Baltimore, MD.Google Scholar
  15. Levine, H., Moniz, E. J., and Sharp, D. H. (1977). American Journal of Physics 45, 75.CrossRefADSGoogle Scholar
  16. Lorentz, H. A. (1892). La theórie eléctromagnetique de Maxwell et son application aux corps mouvemants. Archives Neérl. Science Exactes Nature 25, 363–552.Google Scholar
  17. Lorentz, H. A. (1909). The Theory of Electrons. Teubner, Leipzig, 2nd edn., (1916).Google Scholar
  18. Low, F. (1997). Run-Away Electrons in Relativistic Spin 1/2 Quantum Electrodynamics, Preprint MIT- CTP-2522.Google Scholar
  19. Makowski, A. J., Pepowski, P., and Dembiski, S. T. (2000). Physics Letters A 266, 241.MATHCrossRefADSMathSciNetGoogle Scholar
  20. Moniz, E. J. and Sharp, D. H. (1977). Physical Review D 15, 2850.CrossRefADSGoogle Scholar
  21. Nogamia, Y., Toyamab, F. M., and van Dijk, W. (2000). Physics Letters A 270, 279.CrossRefADSMathSciNetGoogle Scholar
  22. Page, L. (1918). Physical Review 11, 376.CrossRefADSGoogle Scholar
  23. Plastino, A. R., Casas, M., and Plastino, A. (2001). Physics Letters A 281, 297.MATHCrossRefADSMathSciNetGoogle Scholar
  24. Potel, G., Muñoz-Aleñar, M., Barranco, F., and Vigezzi, E. (2002). Physics Letters A 299, 125.MATHCrossRefMathSciNetGoogle Scholar
  25. Prezhdo, O. V. and Brooksby, C. (2001). Physical Review Letters 86, 3215.CrossRefADSGoogle Scholar
  26. Rohrlich, F. (1965). Classical Charged Particles, Addison-Wesley, Reading, MA. See Chapter 6.MATHGoogle Scholar
  27. Rohrlich, F. (1997). American Journal of Physics 65, 1051CrossRefADSGoogle Scholar
  28. Rohrlich, F. (2000). American Journal of Physics 68, 1109.CrossRefADSGoogle Scholar
  29. Shifren, L., Akis, R., and Ferry, D. K. (2000). Physics Letters A 274, 75.MATHCrossRefADSGoogle Scholar
  30. Sommerfeld, A. (1904). Simplified Deduction of the Field and the Forces of An Electron Moving in Any Given Way. Akad. van Wetensch. te Amsterdam 13. (English translation 7, 346 (1905)).Google Scholar
  31. Stomphorst, R. G. (2002). Physics Letters A 292, 213.MATHCrossRefADSMathSciNetGoogle Scholar
  32. Tumulka, R. (2004). American Journal of Physics 72, 1220. See references therein.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Physics DepartmentThe Harvard-Westlake SchoolStudio CityUSA
  2. 2.Department of SciencesUniversity of California, Los Angeles, Extension ProgramLos AngelesUSA

Personalised recommendations