International Journal of Theoretical Physics

, Volume 45, Issue 6, pp 1132–1151 | Cite as

Intrinsic Magnetic Flux of the Electron's Orbital and Spin Motion

  • K. K. Wan
  • M. Saglam


In analogy with the fact that there are magnetic moments associated respectively with the electron's orbital and spin motion in an atom we present several analyses on a proposal to introduce a concept of intrinsic magnetic flux associated with the electron's orbital and spin motion. It would be interesting to test or to demonstrate Faraday's and Lenz's laws of electromagnetic induction arising directly from the flux change due to transition of states in an atom and to examine applications of this concept of intrinsic flux.


Cooper Pair Circular Motion Spin Motion Magnetic Quantum Number Orbital Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barut, A. O. and Meystre, P. (1984). Phys. Lett. A 105A, 458.CrossRefADSMathSciNetGoogle Scholar
  2. Barut, A. O., Bozic, M., and Maric, Z. (1992). Ann. Phys. 214, 53.CrossRefADSMathSciNetGoogle Scholar
  3. Bell, J. S. (1966). Rev. Mod. Phys. 38, 447.zbMATHCrossRefADSGoogle Scholar
  4. Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge), p. 3.Google Scholar
  5. Capri, A. Z. (1985). Nonrelativitic Quantum Mechanics (Benjamin/Cummings, Menlo Park, California), pp. 457–468, 454.Google Scholar
  6. Cohen-Tannoudji, C., Diu, B., and Laloë, F. (1977). Quantum Mechanics (Wiley, New York, and Hermann, Paris) p. 827.Google Scholar
  7. Deaver, B. S. and Fairbank, W. M. (1961). Phys. Rev. Lett. 7, 43.CrossRefADSGoogle Scholar
  8. Feynman, R. P., Leighton, R. B., and Sands, M. (1964). The Feynman Lectures on Physics, Vol. 2. (Addison-Wesley, New York), pp. 28–3.Google Scholar
  9. Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics, Vol. 3. (Addison-Wesley, New York), pp. 21–11, pp. 21–26, pp. 21–27. 34–2, pp. A3–A4.zbMATHGoogle Scholar
  10. Fujita, S. and Godoy, S. (1996). Quantum Statistical Theory of Superconductivity (Plenum, New York) p. 3.Google Scholar
  11. Gallop, J. C. (1091). SQUIDs, the Josephson Effects and Superconducting Electronics (Adam Hilger, Bristol) 2.4.1, p. 38.Google Scholar
  12. Greiner, W. (1989). Quantum Mechanics, (Springer-Verlag, New York), p. 162.Google Scholar
  13. Harrison, F. E. and Wan, K. K. (1997). J. Phys. A 30, 4731.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. Jackson, J. D. (1999). Classical Electrodynamics (Wiley, New York). Eq. (5.42) on p. 183. Eq. (5.41) on p. 183. Eq. (5.56) on p. 186. Eq. (5.59) on p. 187.zbMATHGoogle Scholar
  15. Jackson, T. D. (1985). St. Andrews University PhD Thesis pp. 295–298.Google Scholar
  16. Kip, A. F. (1981). Fundamentals of Electricity and Magnetism (McGraw-Hill International Student Edition), p. 355, 308.Google Scholar
  17. Kittel, C. (1996). Introduction to Solid State Physics (Wiley, New York), 7th ed., pp. 255–257.Google Scholar
  18. Landau, L. D. and Lifshitz, E. M. (2002). Quantum Mechanics (Butterworth-Heinemann, Oxford), 3rd ed., p. 171.Google Scholar
  19. Lorrain, P. and Corson, D. (1970). Electromagetic Fileds and Waves (W H Freeman, San Francisco), 8.4.2, pp. 345–346.Google Scholar
  20. Merzbacher, E. (1998). Quantum Mechanics (John Wiley, New York), pp. 27, 122, 620.Google Scholar
  21. Miller, A., Ebrahimzadeh, M., and Finlayson, D. M. (eds.) (1999). Proceedings of the 15th Scottish Universities Summer School in Physics on Semiconductor Quantum Optoelectronics (IOP Publishing, Bristol).Google Scholar
  22. Rose-Innes, A. C. and Rhoderick, E. H. (1978). Introduction to Superconductivity (Pergamon Press, Oxford) p. 9.Google Scholar
  23. Rosen, N. (1951). Phys. Rev. 82, 621.zbMATHCrossRefADSGoogle Scholar
  24. Saglam, M. and Boyacioglu, B. (2002a). Int. J. Mod. Phys. B16, 607.ADSGoogle Scholar
  25. Saglam, M. and Boyacioglu, B. (2002b). Phys. Stat. Sol. Phys. B 230, 133.CrossRefADSGoogle Scholar
  26. Schulman, L. (1968). Phys. Rev. 176, 1558.CrossRefADSMathSciNetGoogle Scholar
  27. Schulman, L. (1981). Techniques and Applications of Path Integration (Wiley, New York).zbMATHGoogle Scholar
  28. Spiegel, M. R. (1974). Advanced Calculus, a Schaum's Outline Series (McGraw-Hill, New-York), p. 153 Fig. 7–27(b).Google Scholar
  29. Tipler, P. A. and Gene, M. (2004). Physics for Scientists and Engineers 5th and extended edition (Freeman, New York), p. 835.Google Scholar
  30. Trueman, C. and Wan, K. K. (2000). J. Math. Phys. 41, 195.zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. Wan, K. K. (2006). From Micro to Macro Quantum Systems: A United Farmalism with Superselection Rules and its Applications, (Imperial College Press, London), Part III.Google Scholar
  32. Wan, K. K. and Fountain, R. (1996). Found. Phys. 26, 1165.CrossRefADSMathSciNetGoogle Scholar
  33. Wan, K. K. and Fountain, R. (1998). Int. J. Theor. Phys. 37, 2153.zbMATHCrossRefMathSciNetGoogle Scholar
  34. Wan, K. K. and Harrison, F. E. (1993). Phys. Lett. A 174A, 1.CrossRefADSGoogle Scholar
  35. Willaims, J. E. C. (1970). Superconductivity and its Applications (Pion Limited, London) 12.1 pp. 167–167.Google Scholar
  36. Zettili, N. (2001). Quantum Mechanics (Wiley, Chichester), p. 346.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsFifeUK
  2. 2.Department of Physics, Faculty of SciencesAnkara UniversityAnkaraTurkey

Personalised recommendations