International Journal of Theoretical Physics

, Volume 45, Issue 6, pp 1091–1106 | Cite as

Hamiltonian Formulation and Action Principle for the Lorentz-Dirac System



The possibility of constructing a Lagrangian and Hamiltonian formulation is examined for a radiating point-like charge usually described by the classical Lorentz-Dirac equation. It turns out that the latter equation cannot be obtained from the variational principle, and, furthermore, has nonphysical solutions. It is proposed to consider a physically equivalent set of reduced equations which admit a Hamiltonian formulation with non-canonical Poisson brackets. As an example, the effective dynamics of a non-relativistic particle moving in a homogeneous magnetic field is considered. The proposed Hamiltonian formulation may be considered as a first step to a consistent quantization of the Lorentz-Dirac system.

Key Words

Lorentz-Dirac equation systems with higher derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, I. and Thompson, G. (1982). Mem. Am. Math. Soc. 98, 1–24.MathSciNetGoogle Scholar
  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D. (1977). Ann. Phys. 111, 61–151.ADSMathSciNetGoogle Scholar
  3. Darboux, G. (1894). Lesons sur la Theorie Generale des Surfaces Gauther-Villars, Paris.Google Scholar
  4. Dirac, P. A. M. (1938). Proc. R. Soc. 167, 148–169.MATHCrossRefADSGoogle Scholar
  5. Dodonov, V. V., Man’ko, V. I., and Skarzhinsky, V. D. (1978). Preprint of P.N. Lebedev Physical Institute.Google Scholar
  6. Douglas, J. (1941). Trans. Am. Math. Soc. 50(71), 71–87.MATHCrossRefGoogle Scholar
  7. Havas, P. (1957). Nuovo Cimento Suppl. 3, 363.CrossRefMathSciNetGoogle Scholar
  8. Havas, P. (1973). Actra. Phys. Aust. 38, 145–151.Google Scholar
  9. Henneaux, M. (1982). Ann. Phys. 140, 45–64.MATHCrossRefADSMathSciNetGoogle Scholar
  10. Hojman, S. and Urrutia, L. (1981). J. Math. Phys. 22, 1896–1903.MATHCrossRefADSMathSciNetGoogle Scholar
  11. Landau, L. D. and Lifshitz, E. M. (1962). The Classical Theory of Fields Pergamon, Oxford.MATHGoogle Scholar
  12. Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G., and Rubano, C. (1990). Phys. Rep. 188, 147.CrossRefADSMathSciNetGoogle Scholar
  13. Poisson, E. (2006). preprint gr-qc/9912045.Google Scholar
  14. Santilli, R. (1977). Ann. Phys. (NY) 103, 354–359.MATHCrossRefADSMathSciNetGoogle Scholar
  15. von Helmholtz, H. (1887). Journ. f. d. reine u. angew. Math. 100, 137.CrossRefGoogle Scholar
  16. Woodhouse N. J. M. (1992). Geometric Quantization Oxford University Press, Oxford.MATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations