International Journal of Theoretical Physics

, Volume 45, Issue 6, pp 1029–1039

Noether Symmetries Versus Killing Vectors and Isometries of Spacetimes

  • A. H. Bokhari
  • A. H. Kara
  • A. R. Kashif
  • F. D. Zaman
Article

Abstract

Symmetries of spacetime manifolds which are given by Killing vectors are compared with the symmetries of the Lagrangians of the respective spacetimes. We find the point generators of the one parameter Lie groups of transformations that leave invariant the action integral corresponding to the Lagrangian (Noether symmetries). In the examples considered, it is shown that the Noether symmetries obtained by considering the Larangians provide additional symmetries which are not provided by the Killing vectors. It is conjectured that these symmetries would always provide a larger Lie algebra of which the KV symmetres will form a subalgebra.

Key Words

Noether symmetries isometries of spacetimes Lie algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bokhari, A. H. (1992). International Journal of Theoretical Physics 312091.MATHCrossRefADSMathSciNetGoogle Scholar
  2. Bokhari, A. H., Kashif, A. R., and Qadir, A. (2004). Curvature collineations of some plane symmetric static spacetimes, to appear in Proceedings of the 11th Regional Conference, Teheran, Iran.Google Scholar
  3. Feroze, Tooba, Mahomed, F. M., and Qadir, Asghar (2005). The Connection Between Isometries and Symmetries of the Underlying Spaces, to appear in Nonlinear Dynamics.Google Scholar
  4. Kara, A. H., Mahomed, F. M., and Leach, P. G. L. (1994). The Noether equivalence problem for particle Lagrangians. J. Math. Anal. Appl. 188(3), 867–884.MATHCrossRefMathSciNetGoogle Scholar
  5. Kara, A. H., Vawda, F. E., and Mahomed, F. M. (1994). Symmetries of first integrals and solutions of differential equations. Lie Groups and their Applications 1(2), 1–17.MATHMathSciNetGoogle Scholar
  6. Khesin, B. (2005). Topological fluid dynamics. Notices of the AMS 52(1), 9–19.MATHMathSciNetGoogle Scholar
  7. Meisner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation Benjamin, New York.Google Scholar
  8. Noether, E., Invariante Variationsprobleme (1918). Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, 2, 235–257 (English translation in Transport Theory and Statistical Physics, 1(3), 186–207 (1971)).Google Scholar
  9. Olver, P. (1986). Application of Lie Groups to Differential Equations Springer-Verlag, New York.Google Scholar
  10. Petrov, A. Z. (1969). Einstein Spaces, Pergamon, Oxford.MATHGoogle Scholar
  11. Stephani, H. (1989). Differential Equations: Their Solution Using Symmetries. Cambridge University Press, Cambridge.MATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. H. Bokhari
    • 1
  • A. H. Kara
    • 2
  • A. R. Kashif
    • 3
  • F. D. Zaman
    • 1
  1. 1.Department of Mathematical SciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.School of Mathematics and Centre for Differential Equations, Continuum Mechanics and ApplicationsUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.College of Electrical and Mechanical EngineeringNational University of Scieces and TechnologyRawalpindiPakistan

Personalised recommendations