International Journal of Theoretical Physics

, Volume 45, Issue 4, pp 743–749

Connection Considerations of Gravitational Field in Finsler Spaces



Some alternative connection structures of the Finslerian gravitational field are considered by modifying the independent variables (x,y) (x: point and y: vector) in various ways. For example, (xk,yi) (k,i = 1,2,3,4) are changed to (xk,y0) (y0: scalar) or (x0,yi) (x0: time axis); (xk,yi) are generalized to (xk,yi,pi) (pi: covector dual to yi) or (xk,yi,qa) (qa: covector different from pi); (xk,yi) are further generalized to (xk,y(a)i) (a = 1,2,…,m), (y(a): (a)th vector), etc.

Key words

Finsler geometry Finslerian relativity connections gravitational field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann, P. G. (1961). Introduction to the Theory of Relativity, Prentice Hall, New York.Google Scholar
  2. Ikeda, S. (1995). Advanced Studies in Applied Geometry, Seizansha, Sagamihara.Google Scholar
  3. Ikeda, S. (2000). On the intrinsic behavior of the internal variable in the finslerian field theory. Nuovo Cimento 115, 287–290.Google Scholar
  4. Kawaguchi, A. (1932). Die Differentialgeometrie in der verallgemeinerten Mannigfaltigkeit. Rend. Circ. Mate. Palermo 56, 246–276.Google Scholar
  5. Miron, R. (1997). The Geometry of Higher Order Lagrange Spaces, Kluwer Academic Press, Dodrecht.MATHGoogle Scholar
  6. Miron, R. and Anastasiei, M. (1997). Vector Bundles and Lagrange Spaces with Applications to Relativity, Geometry Balkan Press, Bucharest.MATHGoogle Scholar
  7. Miron, R. Hrimuic, D. Shimada, H., and Sabau, S. V. (2001). The Geometry of Hamilton and Lagrange Spaces Kluwer Academic Press, Dodrecht.MATHGoogle Scholar
  8. Peebles, P. J. E. (1993). Principles of Physical Cosmology, Princeton University Press.Google Scholar
  9. Stavrinos, P. C. and Diakogiannis, F. I. (2004) Finslerian Structure of Anisotropic Gravitational Field, Gravitation and Cosmology, 10B(4), 1–11.Google Scholar
  10. Stavrinos, P. C. (2005). On the generalized metric structure of space time: Finslerian anisotropic gravitational field. 11th Conference on Recent Developments in Gravity, Journal of Physics: Conference Series 8, 49–57.Google Scholar
  11. Vacaru, S. (1997). Locally anisotropic gravity and strings. Annals of Physics 256, 39–61.CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AthensPanepistimiopolisGreece
  2. 2.Department of Mechanical Engineering, Faculty of Science and TechnologyTokyo University of ScienceNoda, ChibaJapan

Personalised recommendations