International Journal of Theoretical Physics

, Volume 45, Issue 3, pp 546–553

Quantum Fluctuations of the Current and Voltage in Thermal Vacuum State for Mesoscopic Quartz Piezoelectric Crystal

Article

Abstract

The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the method of damped harmonic oscillator quantization. It is shown that, when each branch is in the thermal vacuum states, the quantum fluctuations of the voltage, and current of each loop relate with not only the equivalent circuit inherent parameter, but also the temperature and decay according to exponent along with time.

Key Words

mesoscopic quartz piezoelectric crystal equivalent circuit thermal vacuum state quantum fluctuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, B., Li, Y. Q., Fang, H., Jiao, Z. K., and Zhang, Q. R. (1995). Quantum Effects in a Mesoscopic Circuit. Physics Letters A 205, 121.CrossRefADSGoogle Scholar
  2. Fan, H. Y., Fan, Y., and Song, T. Q. (2002). Quantum Theory of Mesoscopic Electric Circuits in Entangled State Representation. Physics Letters A 305, 222.MATHCrossRefADSMathSciNetGoogle Scholar
  3. Fan, H. Y., and Liang, X. T. (2000). Quantum Fluctuation in Thermal Vacuum State for Mesoscopic LC Electric Circuit. Chinese Physics Letters 17, 174.CrossRefGoogle Scholar
  4. Ji, Y. H., and Lei, M. S. (2001). The Dependence of the Quantum Fluctuation of a Mesoscopic Coupled Circuit on Temperature. Chinese Journal of Quantum Electronics 18, 274 (in Chinese).Google Scholar
  5. Li, Y. Q., and Chen, B. (1996). Quantum Theory for Mesoscopic Electric Circuits. Physical Review B 53, 4027.CrossRefADSGoogle Scholar
  6. Li, H. Q. (2005). Quantization of Mesoscopic Quartz Piezoelectric Crystal Equivalent Circuit. Acta Physica Sinica 54, 1361 (in Chinese).Google Scholar
  7. Liang, M. L., and Yuan, B. (2002). Nonzero Temperature Squeezing of the Time-Dependence Harmonic Oscillator and the Applications to the Capacitive Coupled Electric Circuit. Communications in Theoretical Physics 37, 519.MathSciNetGoogle Scholar
  8. Liu, B. X., Zhang, S., and Zhao, Y. F. (2003). Quantum Fluctuation of a Mesoscopic RLC Circuit in Thermal Vacuum State. Chinese Journal of Quantum Electronics 20, 192 (in Chinese).MATHGoogle Scholar
  9. Peng, H. W. (1980). Quantum Mechanical Treatment of a Damped Harmonic Oscillator. Acta Physica Sinica 29, 1084 (in Chinese).ADSMathSciNetGoogle Scholar
  10. Song, T. Q. (2003a). Quantum Fluctuations in Thermal Vacuum State for Two LC Circuits with Mutual Inductance. International Journal of Theoretical Physics 42, 793.MATHCrossRefGoogle Scholar
  11. Song, T. Q., and Zhu, Y. J. (2003b). Quantum Fluctuation of a Mesoscopic Inductance Coupling Circuit at Finite Temperature. Communications in Theoretical Physics 39, 447.MathSciNetGoogle Scholar
  12. Umezawa, H., Matsumoto, H., and Tachiki, M. (1982). Thermo Field Dynamics Condensed States, North-Holland, Amstrdam.Google Scholar
  13. Wang, J. S., Liu, T. K., and Zhan, M. S. (2000a). Quantum Fluctuations in a Mesoscopic Inductance Coupling Circuit. International Journal of Theoretical Physics 39, 2013.MATHCrossRefMathSciNetGoogle Scholar
  14. Wang, J. S., Liu, T. K., and Zhan, M. S. (2000b). Quantum Fluctuations in a Mesoscopic Capacitance Coupling Circuits in a Displaced Squeezed Fock State. Acta Physica Sinica 49, 2771 (in Chinese).Google Scholar
  15. Wang, Z. Q. (2002). Quantum Fluctuations in Thermal Vacuum State for Mesoscopic RLC Electric Circuit. Acta Physica Sinica 51, 1808 (in Chinese).Google Scholar
  16. Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002). Quantum Squeezing Effect of Mesoscopic Capacitance-Inductance-Resistance Coupled Circuit. Physics Letters A 29, 1804.Google Scholar

Copyright information

© International Journal of Theoretical Physics 2006

Authors and Affiliations

  1. 1.Department of PhysicsHeze UniversityShandongPeople's Republic of China
  2. 2.Department of PhysicsLiaocheng UniversityShandongPeople's Republic of China

Personalised recommendations