International Journal of Theoretical Physics

, Volume 44, Issue 10, pp 1807–1837 | Cite as

Black Hole Entropy: Inside or Out?

  • Ted JacobsonEmail author
  • Donald Marolf
  • Carlo Rovelli


A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense “the number of black hole microstates that can communicate with the outside world.” Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.


black hole entropy thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashtekar, A., Engle, J., and van den Broeck, C. (2005). Quantum horizons and black hole entropy: Inclusion of distortion and rotation. Class. Quantum Grav. 22, 427.CrossRefMathSciNetGoogle Scholar
  2. Jacobson, T. (1995). Thermodynamics of space–time: The Einstein equation of state. Physical Review Letters 75, 1260 [arXiv:gr-qc/9504004].CrossRefMathSciNetzbMATHADSGoogle Scholar
  3. Jacobson, T. (1999a). Trans-Planckian redshifts and the substance of the space–time river. Programs of Theoretical Physics 136(Suppl.), 1 [arXiv:hep-th/0001085].Google Scholar
  4. Jacobson, T. (1999b). On the nature of black hole entropy. In General Relativity and Relativistic Astrophysics: Eighth Canadian Conference, AIP Conference Proceedings 493, C. Burgess and R. C. Myers, eds., AIP, Melville, New York, pp. 85–97.Google Scholar
  5. Marolf, D. (2005). On the quantum width of a black hole horizon. In Particle Physics and the Universe, J. Trampetic, and J. Wess, eds., Springer-Verlag, Berlin, pp. 99–112.Google Scholar
  6. Marolf, D., Minic, D., and Ross, S. F. (2004). Notes on spacetime thermodynamics and the observer-dependence of entropy. Phys. Rev. D 69, 064006 [arXiv:hep-th/0310022].MathSciNetADSGoogle Scholar
  7. Rovelli, C. (1996a). Black hole entropy from loop quantum gravity. Physical Review Letters 14, 3288.MathSciNetADSGoogle Scholar
  8. Rovelli, C. (1996b). Loop quantum gravity and black hole physics. Helvetica Physical Acta 69, 582.Google Scholar
  9. Rovelli, C. (2004). Quantum Gravity, Cambridge University Press, Cambridge, UK.Google Scholar
  10. Sorkin, R. D. (1986). Toward a proof of entropy increase in the presence of quantum black holes. Phys. Rev. Lett. 56, 1885.CrossRefMathSciNetADSGoogle Scholar
  11. Sorkin, R. D. (1998). The statistical mechanics of black hole thermodynamics. In Black Holes and Relativistic Stars, R. M. Wald, ed., University of Chicago Press, Chicago [arXiv:gr-qc/9705006].Google Scholar
  12. Susskind, L. and Thorlacius, L. (1994). Physical Review D 49, 966 [arXiv:hep-th/9308100].MathSciNetADSGoogle Scholar
  13. Susskind, L., Thorlacius, L., and Uglum, J. (1993). The stretched horizon and black hole complementarity. Physical Review D 48, 3743 [arXiv:hep-th/9306069].CrossRefMathSciNetADSGoogle Scholar
  14. Thorne, K. S., Zurek, W. H., and Price, R. H. (1986). In Black Holes: The Membrane Paradigm, K. S. Thorne, R. H. Price, and D. A. MacDonald, eds., Yale University Press, New Haven, CT, p. 280.Google Scholar
  15. Zurek, W. H. and Thorne, K. S. (1985). Statistical mechanical origin of the entropy of a rotating, charged black hole. Physical Review Letters 54, 2171.CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MarylandMaryland
  2. 2.Physics DepartmentUCSBSanta BarbaraCalifornia
  3. 3.Centre de Physique Théorique de LuminyUniversité de la MéditerranéeMarseille
  4. 4.Department of PhysicsUniversity of MarylandMaryland

Personalised recommendations