Group Field Theory: An Overview
Article
- 235 Downloads
- 173 Citations
Abstract
We give a brief overview of the properties of a higher-dimensional generalization of matrix model which arise naturally in the context of a background approach to quantum gravity, the so-called group field theory. We show in which sense this theory provides a third quantization point-of-view on quantum gravity.
Keywords
Field Theory Elementary Particle Quantum Field Theory Quantum Gravity Matrix Model
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Ambjorn, J., Durhuus, B., and Jonsson, T. (1991). Three-dimensional simplicial quantum gravity and generalized matrix models. Modern Physics Letters A 6, 1133.MathSciNetADSGoogle Scholar
- Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: A status report. Classical Quantum Gravity 21, R53 (2004) [arXiv:gr-qc/0404018].Google Scholar
- Baez, J. C. (1996). Four-Dimensional BF theory with cosmological term as a topological quantum field theory. Letters of Mathematical Physics 38, 129 [arXiv:q-alg/9507006].MathSciNetzbMATHGoogle Scholar
- Baez, J. C. (1998). Spin foam models. Classical Quantum Gravity 15, 1827 [arXiv:gr-qc/9709052].CrossRefMathSciNetzbMATHADSGoogle Scholar
- Barrett, J. W. (1998). The Classical evaluation of relativistic spin networks. Advances in Theoretical Mathematical Physics 2, 593 [arXiv:math.qa/9803063].MathSciNetzbMATHGoogle Scholar
- Barrett, J. W. and Crane, L. (1998). Relativistic spin networks and quantum gravity. Journal of Mathematical Physics 39, 3296 [arXiv:gr-qc/9709028].CrossRefMathSciNetADSGoogle Scholar
- Barrett, J. W. and Crane, L. (2000). A Lorentzian signature model for quantum general relativity. Classical Quantum Gravity 17, 3101 [arXiv:gr-qc/9904025].MathSciNetADSGoogle Scholar
- Boulatov, D. V. (1992). A Model of three-dimensional lattice gravity. Modern Physics Letters A 7, 1629 [arXiv:hep-th/9202074].MathSciNetzbMATHADSGoogle Scholar
- De Pietri, R. and Petronio, C. (2000). Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. Journal of Mathematical Physics 41, 6671 [arXiv:gr-qc/0004045].CrossRefMathSciNetADSGoogle Scholar
- De Pietri, R. (2001). Matrix model formulation of four dimensional gravity. Nuclear Physics Proceedings Supplementary 94, 697. [arXiv:hep-lat/0011033].ADSGoogle Scholar
- De Pietri, R. and Freidel, L. (1999). so(4) Plebanski Action and Relativistic Spin Foam Model. Classical Quantum Gravity 16, 2187 [arXiv:gr-qc/9804071].MathSciNetADSGoogle Scholar
- De Pietri, R., Freidel, L., Krasnov, K., and Rovelli, C. (2000). Barrett–Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nuclear Physics B 574, 785 [arXiv: hep-th/9907154].CrossRefMathSciNetADSGoogle Scholar
- Di Francesco, P., Ginsparg, P. H., and Zinn-Justin, J. (1995). 2-D Gravity and random matrices. Physical Report 254, 1 [arXiv:hep-th/9306153].MathSciNetADSGoogle Scholar
- Freidel, L. (2000). A Ponzano–Regge model of Lorentzian 3-dimensional gravity. Nuclear Physics Proceedings Supplementary 88, 237 [arXiv:gr-qc/0102098].MathSciNetADSGoogle Scholar
- Freidel, L. and Krasnov, K. (1999). Spin foam models and the classical action principle. Advances in Theoretical Mathematical Physics 2, 1183 [arXiv:hep-th/9807092].MathSciNetGoogle Scholar
- Freidel, L. and Krasnov, K. (2000). Simple spin networks as Feynman graphs. Journal of Mathematical Physics 41, 1681 [arXiv:hep-th/9903192].CrossRefMathSciNetADSGoogle Scholar
- Freidel, L. and Louapre, D. (2003). Diffeomorphisms and spin foam models. Nuclear Physics B 662, 279 [arXiv:gr-qc/0212001].CrossRefMathSciNetADSGoogle Scholar
- Freidel, L., Krasnov, K., and Puzio, R. (1999). BF description of higher-dimensional gravity theories. Advances in Theoretical Mathematical Physics 3, 1289 [arXiv:hep-th/9901069].MathSciNetGoogle Scholar
- Livine, R., Perez, A., and Rovelli, C. (2001) 2d manifold-independent spinfoam theory, arXiv: gr-qc/0102051.Google Scholar
- Markopoulou, F. and Smolin, L. (1997). Causal evolution of spin networks. Nuclear Physics B 508, 409 [arXiv:gr-qc/9702025].CrossRefMathSciNetADSGoogle Scholar
- Mikovic, A. (2003). Spin foam models of Yang–Mills theory coupled to gravity. Classical Quantum Gravity 20, 239 [arXiv:gr-qc/0210051].MathSciNetzbMATHADSGoogle Scholar
- Okolow, A. and Lewandowski, J. (2003). Diffeomorphism covariant representations of the holonomy-flux *-algebra. Classical Quantum Gravity 20, 3543 [arXiv:gr-qc/0302059].MathSciNetADSGoogle Scholar
- Ooguri, H. (1992). Topological lattice models in four-dimensions. Modern Physics Letters A 7, 2799 [arXiv:hep-th/9205090].MathSciNetzbMATHADSGoogle Scholar
- Oriti, D. and Pfeiffer, H. (2002). A spin foam model for pure gauge theory coupled to quantum gravity. Physical Review D 66, 124010 [arXiv:gr-qc/0207041].CrossRefMathSciNetADSGoogle Scholar
- Oriti, D. and Williams, R. M. (2001). Gluing 4-simplices: A derivation of the Barrett–Crane spin foam model for Euclidean quantum gravity. Physical Review D 63, 024022 [arXiv:gr-qc/0010031].CrossRefMathSciNetADSGoogle Scholar
- Perez, A. (2001). Finiteness of a spinfoam model for Euclidean quantum general relativity. Nuclear Physics B 599, 427 [arXiv:gr-qc/0011058].MathSciNetzbMATHADSGoogle Scholar
- Perez, A. (2003). Spin foam models for quantum gravity, Class. Quantum Gravity 20, R43 [arXiv: gr-qc/0301113].zbMATHADSGoogle Scholar
- Perez, A. and Rovelli, C. (2001). Observables in quantum gravity, arXiv:gr-qc/0104034.Google Scholar
- Perez, A. and Rovelli, C. (2001). A spin foam model without bubble divergences. Nuclear Physics B 599, 255 [arXiv:gr-qc/0006107].MathSciNetADSGoogle Scholar
- Ponzano, G. and Regge, T. (1968). Semiclassical limit of Racah coefficients. In Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial Volume, F. Block et al. eds., North Holland, Amsterdam.Google Scholar
- Reisenberger, M. P. (1994). World sheet formulations of gauge theories and gravity, arXiv:gr-qc/9412035.Google Scholar
- Reisenberger, M. P. and Rovelli, C. (1997). *Sum over surfaces* form of loop quantum gravity. Physical Review D: Particles and Fields 56, 3490 [arXiv:gr-qc/9612035].MathSciNetADSGoogle Scholar
- Reisenberger, M. P. and Rovelli, C. (2001). Spacetime as a Feynman diagram: The connection formulation. Classical and Quantum Gravity 18, 121 [arXiv:gr-qc/0002095].CrossRefMathSciNetADSGoogle Scholar
- Sahlmann, H. (2002). Some comments on the representation theory of the algebra underlying loop quantum gravity. arXiv:gr-qc/0207111.Google Scholar
- Sahlmann, H. and Thiemann, T. (2003). Irreducibility of the Ashtekar–Isham–Lewandowski representation. arXiv:gr-qc/0303074.Google Scholar
- Thiemann, T. (1998). Quantum spin dynamics (QSD). Classical and Quantum Gravity 15, 839 [arXiv:gr-qc/9606089].MathSciNetzbMATHADSGoogle Scholar
- Turaev, V. G. and Viro, O. Y. (1992). State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865.CrossRefMathSciNetGoogle Scholar
- Witten, E. (1988). (2 + 1)-Dimensional Gravity as an exactly soluble system. Nuclear Physics B 311, 46.CrossRefMathSciNetADSGoogle Scholar
- Witten, E. (1991). On quantum gauge theories in two-dimensions. Communications in Mathematical Physics 141, 153.CrossRefMathSciNetzbMATHADSGoogle Scholar
Copyright information
© Springer Science + Business Media, Inc. 2005