Advertisement

International Journal of Theoretical Physics

, Volume 44, Issue 9, pp 1587–1597 | Cite as

Invariant Observables and the Individual Ergodic Theorem

  • Beloslav Riečan
  • Mária Jurečková
Article

Abstract

The notion of the almost everywhere equality of observables is introduced. The limit of Cesaro means is an invariant observable with respect to this notion.

Keywords

ergodic theorem MV-algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cignoli, R. L. O., D'Ottaviano, M. L., and Mundici, D. (2000). Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  2. Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  3. Dvurečenskij, A. and Riečan, B. (1980). On the individual ergodic theorem on a logic. Comments on Mathematics, University of Carolina 21, 385–391.Google Scholar
  4. Harman, B. (1985). Maximal ergodic theorem on a logic. Mathematica Slovaca 35, 381–386.zbMATHMathSciNetGoogle Scholar
  5. Harman, B. and Riečan, B. (1992). On the individual ergodic theorem in F-quantum spaces. Zeszyty Naukowe Akademic Ekon. W Poznaniu 187(seria 1), 25–30.Google Scholar
  6. Jurečková, M. (2000). A note on the individual ergodic theorem on product MV-algebras. International Journal of Theoretical Physics 39, 757–764.MathSciNetGoogle Scholar
  7. Lutterová, F. and Pulmannová, S. (1985). On individual ergodic theorem on the Hilbert space logic. Mathematica Slovaca 35, 361–371.MathSciNetGoogle Scholar
  8. Petersen, K. (1983). Ergodic Theory, Cambridge University Press, Cambridge, UK.Google Scholar
  9. Pulmannová, S. (1982). Individual ergodic theorem on a logic. Mathematica Slovaca 32, 413–416.zbMATHMathSciNetGoogle Scholar
  10. Riečan, B. (1982). Two notes on the individual ergodic theorem. In Ergodic Theory and Related Topics, Academic Verlag, Berlin, pp. 169–172.Google Scholar
  11. Riečan, B. (2000). On the individual ergodic theorem. In D-posets of fuzzy sets. Czechoslovak Mathematical Journal 50(125), 673–680.MathSciNetGoogle Scholar
  12. Riečan, B. and Mundici, D. (2001). Probability on MV-algebras. In Handbook on Measure Theory, E. Pap, ed., Elsevier, Amsterdam.Google Scholar
  13. Riečan, B. and Neubrunn, T. (1997). Integral, Measure, and Ordering, Kluwer Academic Publisher, Dordrecht, The Netherlands.Google Scholar
  14. Vrábel, P. (1988). On the individual ergodic theorem on a logic, Zborník PF v Nitre, Matematika 4, 79–85.Google Scholar
  15. Walters, P. (1975). Ergodic Theory—Introductory Lectures, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.M. Bel UniversitySlovakia
  2. 2.Military AcademySlovakia
  3. 3.Mathematical Institute of the Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations