Advertisement

High Utility Infrequent Itemset Mining Using a Customized Ant Colony Algorithm

  • M. S. Arunkumar
  • P. Suresh
  • C. Gunavathi
Article
  • 29 Downloads

Abstract

Itemset mining is a popular extension to the frequent pattern mining problem in data mining. Finding infrequent patterns, however, has gained its importance due to proven utility in the areas of web mining, bioinformatics and others. High utility mining refines the problem focus to identifying business-relevant transaction patterns that take purchase quantities and monetary considerations into account, like unit price and cost, typically to identify patterns of profit potential. High utility infrequent itemset mining unveils rare cases of highly profitable itemsets. This paper proposes a customized Ant colony algorithm for the efficient discovery of high utility infrequent itemsets. The mining performance of proposed algorithm is analyzed on four real time datasets namely chess, food mart, mushroom and retail.

Keywords

Ant colony High utility itemset mining Infrequent itemset mining Rare itemset mining 

References

  1. 1.
    Agarwal, R., Imielinski, T., Swami, A.: Mining association rules between sets of item in large databases. In: Proceedings of the ACM SIGMOD, Washington DC, USA (1993)Google Scholar
  2. 2.
    Agarwal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, pp. 487–499 (1994)Google Scholar
  3. 3.
    Han, J., Pie, J.: Mining frequent patterns by pattern-growth: methodology and implications. ACM SIGKDD Explorations Newsl 2(2), 14–20 (2000)CrossRefGoogle Scholar
  4. 4.
    Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: 3rd IEEE Conference on Data Mining, pp. 19–26 (2003)Google Scholar
  5. 5.
    Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of generating maximal frequent and minimal infrequent sets. In: STACS 2002, vol. 2285, pp. 133–141 (2002)Google Scholar
  6. 6.
    Pillai, J., Vyas, O.P., Muyeba, M.: HURI—A novel algorithm for mining high utility rare itemsets. Adv. Intell. Syst. Comput. 177, 531–540 (2013)CrossRefGoogle Scholar
  7. 7.
    Haglin, D.J., Manning, A.M.: On minimal infrequent itemset mining. In: Proceedings of DIMN’ 07, pp. 141–147 (2007)Google Scholar
  8. 8.
    Gupta, D., Chauhan, A.S.: Ant colony based optimization from infrequent itemsets. In: Proceedings of the 3rd International Conference FICTA, pp. 797–804 (2014)Google Scholar
  9. 9.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proceedings KDD-97, pp. 283–286 (1997)Google Scholar
  11. 11.
    Xun, Y., Zhang, J., Qin, X.: FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans. Syst. Man. Cybern. Syst. 46(3), 313–325 (2016)CrossRefGoogle Scholar
  12. 12.
    Goyal, P., Challa, J.S., Shrivastava, S., Goyal, N.: AnyFI: an anytime frequent itemset mining algorithm for data streams. In: 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, pp. 942–947 (2017)Google Scholar
  13. 13.
    Kulkarni, P.G., Khonde, S.R.: HDFS framework for efficient frequent itemset mining using MapReduce. In: 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, pp. 171–178 (2017)Google Scholar
  14. 14.
    Zhao, X., Zhang, X., Wang, P., Chen, S., Sun, Z.: A weighted frequent itemset mining algorithm for intelligent decision in smart systems. IEEE Access 6, 29271–29282 (2018)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. PAKDD 2005, 689–695 (2005)Google Scholar
  16. 16.
    Erwin, A., Gopalan, R.P., Achuthan, N.R.: CTU-Mine: an efficient high utility itemset mining algorithm using the pattern growth approach. In: 7th IEEE International Conference on Computer and Information Technology, pp. 71–76 (2007)Google Scholar
  17. 17.
    Zhou, L., Liu, Y., Wang, J., Shi, Y.: Utility-based web path traversal pattern mining. In: 7th IEEE ICDMW, pp. 373–378 (2007)Google Scholar
  18. 18.
    Kannimuthu, S., Premalatha, K.: Discovery of high utility itemsets using genetic algorithm with ranked mutation. Appl. Artif. Intell. 28(4), 337–359 (2014)CrossRefGoogle Scholar
  19. 19.
    Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.: Faster high utility itemset mining using estimated utility co-occurrence pruning. In: Proceedings of the 21st ISMIS 2014, pp. 83–92 (2014)Google Scholar
  20. 20.
    Zida, S., Fouriner-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a highly efficient algorithm for high utility itemset mining. Adv. Artif. Intell. Soft Comput. 9413, 530–546 (2015)CrossRefGoogle Scholar
  21. 21.
    Arunkumar, M.S., Suresh, P., Gunavathi, C.: High utility itemset mining using partition utility list structure. J. Comput. Theor. Nanosci. 15(1), 171–178 (2018)CrossRefGoogle Scholar
  22. 22.
    Fournier-Viger, P., Zhang, Y., Lin, J.C.-W., Dinh, D.-T., Le, H.B.: Mining correlated high-utility itemsets using various measures. Logic J IGPL (2018)Google Scholar
  23. 23.
    Pillai, J., Vyas, O.P., Muyeba, M.K.: A fuzzy algorithm for mining high utility rare itemsets—FHURI. Int. J. Recent Trends Eng. Technol. 10(1), 1 (2014)CrossRefGoogle Scholar
  24. 24.
    Niha, S.A.R., Dulhare, U.N.: Extraction of high utility rare itemsets from transactional databases. In: International Conference on Computing and Communication Technologies, Hyderabad, pp. 1–6 (2014)Google Scholar
  25. 25.
    Pillai, J., Vyas, O.P.: CSHURI—modified HURI algorithm for customer segmentation and transaction profitability. Adv. Int. J. Comput. Sci. Eng. Inf. Technol. 2(2), 79–89 (2012)Google Scholar
  26. 26.
    Goyal, V., Dawar, S., Sureka, A.: High utility rare itemset mining over transaction databases. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) Databases in Networked Information Systems. DNIS 2015. Lecture Notes in Computer Science, vol. 8999. Springer, Cham (2015)Google Scholar
  27. 27.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  28. 28.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)zbMATHGoogle Scholar
  29. 29.
    Wu, J.M.T., Zhan, J., Lin, V.: An ACO-based approach to mine high utility itemsets. Knowl. Based Syst. 116, 102–113 (2017)CrossRefGoogle Scholar
  30. 30.
    Seidlova, R., Pozivil, J., Seidl, J.: Marketing and business intelligence with help of ant colony algorithm. J. Strat. Mark.  https://doi.org/10.1080/0965254x.2018.1430058 (to be published)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringBannari Amman Institute of TechnologyErodeIndia
  2. 2.Department of Information TechnologyKongu Engineering CollegeErodeIndia
  3. 3.School of Information Technology and EngineeringVIT UniversityVelloreIndia

Personalised recommendations