Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things

  • Ghulam Shabbir
  • Adeel Akram
  • Muhammad Munwar Iqbal
  • Sohail JabbarEmail author
  • Mai Alfawair
  • Junaid Chaudhry


Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network.


Internet of thing Multi-sink Constrained devices LLNs RPLs DODAG Edge computing CoAP MQTT SDN 



This research was financially supported by University of Engineering and Technology Taxila, Pakistan through the Directorate of Advanced Studies, Research and Technological Development (ASR&TD) research grant, for which we indebted.


  1. 1.
    Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014)Google Scholar
  2. 2.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)CrossRefGoogle Scholar
  3. 3.
    Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., et al.: Internet of things strategic research roadmap. Internet Things-Glob. Technol. Soc. Trends 1, 9–52 (2011)Google Scholar
  4. 4.
    Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012)Google Scholar
  5. 5.
    Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., et al.: Smart grid and smart homes: key players and pilot projects. IEEE Ind. Electron. Mag. 6, 18–34 (2012)CrossRefGoogle Scholar
  6. 6.
    Carels, D., Derdaele, N., De Poorter, E., Vandenberghe, W., Moerman, I., Demeester, P.: Support of multiple sinks via a virtual root for the RPL routing protocol. EURASIP J. Wirel. Commun. Netw. 2014, 91 (2014)CrossRefGoogle Scholar
  7. 7.
    de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015)Google Scholar
  8. 8.
    Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016)Google Scholar
  9. 9.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015)CrossRefGoogle Scholar
  10. 10.
    Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014)Google Scholar
  11. 11.
    Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015)Google Scholar
  12. 12.
    Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015)Google Scholar
  13. 13.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., Leung, K.: A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel. Commun. 20, 91–98 (2013)CrossRefGoogle Scholar
  14. 14.
    Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007)Google Scholar
  15. 15.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1, 22–32 (2014)CrossRefGoogle Scholar
  16. 16.
    Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012)Google Scholar
  17. 17.
    Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007)Google Scholar
  18. 18.
    Oliveira, L.M., De Sousa, A.F., Rodrigues, J.J.: Routing and mobility approaches in IPv6 over LoWPAN mesh networks. Int. J. Commun Syst 24, 1445–1466 (2011)CrossRefGoogle Scholar
  19. 19.
    Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010)Google Scholar
  20. 20.
    Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103, 14–76 (2015)CrossRefGoogle Scholar
  21. 21.
    Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J., et al.: Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51, 36–43 (2013)CrossRefGoogle Scholar
  22. 22.
    Gomez, C., Boix, A., Paradells, J.: Impact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networks. EURASIP J. Wirel. Commun. Netw. 2010, 205407 (2010)CrossRefGoogle Scholar
  23. 23.
    Chen, Y., Chanet, J.-P., Hou, K.M., Shi, H.L.: Extending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs). In. J. Agric. Environ. Inf. Syst. (IJAEIS) 4, 25–47 (2013)CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Chanet, J.-P., Hou, K.-M., Shi, H., De Sousa, G.: A scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL). Sensors 15, 19507–19540 (2015)CrossRefGoogle Scholar
  25. 25.
    Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D.E., Hui, J.W., Levis, P.: Connecting low-power and lossy networks to the internet. IEEE Commun. Mag. 49, 96–101 (2011)Google Scholar
  26. 26.
    Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., et al.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15, 1389–1406 (2013)CrossRefGoogle Scholar
  27. 27.
    Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun. 20, 756–767 (2002)CrossRefGoogle Scholar
  28. 28.
    Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003)Google Scholar
  29. 29.
    Grilo, A.M., Heidrich, M.: Routing metrics for cache-based reliable transport in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2013, 139 (2013)CrossRefGoogle Scholar
  30. 30.
    Jabbar, S., Naseer, K., Gohar, M., Rho, S., Chang, H.: Trust model at service layer of cloud computing for educational institutes. J. Supercomput. 72, 58–83 (2016)CrossRefGoogle Scholar
  31. 31.
    Ahmad, A., Paul, A., Khan, M., Jabbar, S., Rathore, M.M.U., Chilamkurti, N., et al.: Energy efficient hierarchical resource management for mobile cloud computing. IEEE Trans. Sustain. Comput. 2, 100–112 (2017)CrossRefGoogle Scholar
  32. 32.
    Jabbar, S., Minhas, A.A., Imran, M., Khalid, S., Saleem, K.: Energy efficient strategy for throughput improvement in wireless sensor networks. Sensors 15, 2473–2495 (2015)CrossRefGoogle Scholar
  33. 33.
    Zhao, Z., Huangfu, W., Sun, L., Shi, Z., Gan, W.: An open conformance test system towards the standardization of wireless sensor networks. Int. J. Distrib. Sens. Netw. 8, 1–15 (2012)Google Scholar
  34. 34.
    Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010)Google Scholar
  35. 35.
    Deepalakshmi, P., Radhakrishnan, S.: An ant colony-based multi objective quality of service routing for mobile ad hoc networks. EURASIP J. Wirel. Commun. Netw. 2011, 153 (2011)CrossRefGoogle Scholar
  36. 36.
    Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014)Google Scholar
  37. 37.
    Shen, G., Zetik, R., Hirsch, O., Thomä, R.S.: Range-based localization for UWB sensor networks in realistic environments. EURASIP J. Wirel. Commun. Netw. 2010, 476598 (2009)Google Scholar
  38. 38.
    Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016)Google Scholar
  39. 39.
    Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016)Google Scholar
  40. 40.
    Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011)Google Scholar
  41. 41.
    Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013)Google Scholar
  42. 42.
    Iova, O., Theoleyre, F., Noel, T.: Using multiparent routing in RPL to increase the stability and the lifetime of the network. Ad Hoc Netw. 29, 45–62 (2015)CrossRefGoogle Scholar
  43. 43.
    Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014)Google Scholar
  44. 44.
    Kim, H.-S., Ko, J., Culler, D.E., Paek, J.: Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): a survey. IEEE Commun. Surv. Tutor. 19, 2502 (2017)CrossRefGoogle Scholar
  45. 45.
    Khan, M.M., Lodhi, M.A., Rehman, A., Khan, A., Hussain, F.B.: Sink-to-sink coordination framework using RPL: routing protocol for low power and lossy networks. J. Sens. 2016, 11 (2016)Google Scholar
  46. 46.
    Lodhi, M.A., Rehman, A., Khan, M.M., Hussain, F.B.: Transient Multipath routing protocol for low power and lossy networks. KSII Trans. Internet Inf. Syst. (TIIS) 11, 2002–2019 (2017)Google Scholar
  47. 47.
    Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014)Google Scholar
  48. 48.
    Jabbar, S., Minhas, A.A., Rashid, T., Rho, S.: Heuristic approach for stagnation free energy aware routing in wireless sensor networks. Adhoc Sens. Wirel. Netw. 31, 21–45 (2016)Google Scholar
  49. 49.
    Alishahi, M., Moghaddam, M.H.Y., Pourreza, H.R.: Multi-class routing protocol using virtualization and SDN-enabled architecture for smart grid. Peer-to-Peer Netw. Appl. 11, 1–17 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Telecom EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Department of Computer ScienceUniversity of Engineering and TechnologyTaxilaPakistan
  3. 3.Department of Computer ScienceNational Textile UniversityFaisalabadPakistan
  4. 4.Prince Abdullah bin Ghazi Faculty of Information TechnologyAl-Balqa Applied UniversitySaltJordan
  5. 5.College of Security and IntelligenceEmbry-Riddle Aeronautical UniversityPrescottUSA

Personalised recommendations