Variable Length Instruction Compression on Transport Triggered Architectures

  • Timo Viitanen
  • Janne Helkala
  • Heikki Kultala
  • Pekka Jääskeläinen
  • Jarmo Takala
  • Tommi Zetterman
  • Heikki Berg


The memories used for embedded microprocessor devices consume a large portion of the system’s power. The power dissipation of the instruction memory can be reduced by using code compression methods, which may require the use of variable length instruction formats in the processor. The power-efficient design of variable length instruction fetch and decode is challenging for static multiple-issue processors, which aim for low power consumption on embedded platforms. The memory-side power savings using compression are easily lost on inefficient fetch unit design. We propose an implementation for instruction template-based compression and two instruction fetch alternatives for variable length instruction encoding on transport triggered architecture, a static multiple-issue exposed data path architecture. With applications from the CHStone benchmark suite, the compression approach reaches an average compression ratio of 44% at best. We show that the variable length fetch designs reduce the number of memory accesses and often allow the use of a smaller memory component. The proposed compression scheme reduced the energy consumption of synthesized benchmark processors by 15% and area by 33% on average.


Transport triggered architecture Instruction compression Instruction fetch Embedded systems 


  1. 1.
    Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Chichester (1997)Google Scholar
  2. 2.
    Deepaksubramanyan, B.S., Nun̋ez, A.: Analysis of subthreshold leakage reduction in CMOS digital circuits. In: Proc. Midwest Symp. Circ. Syst., pp. 1400–1404. Montreal, QC (2007).
  3. 3.
    Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C., Takala, J., Martinez, J.: Customized exposed datapath soft-core design flow with compiler support. In: Proc. Int. Conf. Field Programmable Logic and Applications, pp. 217–222. Milan, Italy (2010).
  4. 4.
    Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and quantitative analysis of the CHStone benchmark program suite for practical C-based high-level synthesis. J. Inf. Process. 17, 242–254 (2009). Google Scholar
  5. 5.
    He, Y., She, D., Mesman, B., Corporaal, H.: MOVE-Pro: a low power and high code density TTA architecture. In: Proc. Int. Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation, pp. 294–301. Samos, Greece (2011)Google Scholar
  6. 6.
    Heikkinen, J.: Program compression in long instruction word application-specific instruction-set processors. Ph.D. thesis, Tampere Univ. Tech., Finland (2007)Google Scholar
  7. 7.
    Heikkinen, J., Takala, J., Corporaal, H.: Dictionary-based program compression on customizable processor architectures. Microprocess. Microsyst. 2, 139–153 (2009)CrossRefGoogle Scholar
  8. 8.
    Helkala, J., Viitanen, T., Kultala, H., Jääskeläinen, P., Takala, J., Zetterman, T., Berg, H.: Variable length instruction compression on Transport Triggered Architectures. In: Proc. Int. Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation, pp. 149–155. Samos, Greece (2014)Google Scholar
  9. 9.
    Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-specific instruction-set processors. In: Proc. SPIE Multimedia on Mobile Devices, pp. 65,070X–1 – 65,070X–11. San Jose, USA (2007)Google Scholar
  10. 10.
    Kultala, H., Viitanen, T., Jääskeläinen, P., Helkala, J., Takala, J.: Compiler optimizations for code density of variable length instructions. In: Proc. IEEE Workshop on Signal Processing Systems, pp. 1–6. Belfast, UK (2014)Google Scholar
  11. 11.
    Pan, H., Asanović, K.: Heads and tails: a variable-length instruction format supporting parallel fetch and decode. In: Proc. Int. Conf. Compilers Arch. Synthesis for Embedded Syst., pp. 168–175. Atlanta, Georgia (2001).
  12. 12.
    Pilo, H., Adams, C.A., Arsovski, I., Houle, R.M., Lamphier, S.M., Lee, M.M., Pavlik, F.M., Sambatur, S.N., Seferagic, A., Wu, R., Younus, M.I.: A 64 Mb SRAM in 22 nm SOI technology featuring fine-granularity power gating and low-energy power-supply-partition techniques for 37% leakage reduction. In: Proc. IEEE Int. Solid-State Circ. Conf. Digest Tech. Papers, pp. 322–323. San Francisco, USA (2013).
  13. 13.
    Schlansker, M.S., Rau, B.R.: EPIC: An Architecture for Instruction-Level Parallel Processors. Tech. rep, Hewlett-Packard (2000)Google Scholar
  14. 14.
    Segars, S., Clarke, K., Goudge, L.: Embedded control problems, thumb, and the ARM7TDMI. IEEE Micro 15(5), 22–30 (1995). CrossRefGoogle Scholar
  15. 15.
    Shahabuddin, S., Janhunen, J., Bayramoglu, M.F., Juntti, M., Ghazi, A., Silvén, O.: Design of a unified transport triggered processor for LDPC/turbo decoder. In: Proc. Int. Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation, pp. 288–295. IEEE (2013)Google Scholar
  16. 16.
    Sheng, L., Ahn, J.H., Strong, R., Brockman, J., Tullsen, D., Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of Annual International Symposium on Microarchitecture, pp. 469–480. New York, USA (2009)Google Scholar
  17. 17.
    Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A comprehensive memory modeling tool and its application to the design and analysis of future memory hierarchies. In: Proc. ACM/IEEE Int. Symp. Comp. Arch., pp. 51–62. Beijing, China (2008)Google Scholar
  18. 18.
    Viitanen, T., Kultala, H., Jaaskelainen, P., Takala, J.: Heuristics for greedy transport triggered architecture interconnect exploration. In: Proc. Int. Conf. Compilers, Architecture and Synthesis for Embedded Systems, pp. 1–7 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pervasive ComputingTampere University of TechnologyTampereFinland
  2. 2.Nokia NetworksTampereFinland
  3. 3.Nokia TechnologiesTampereFinland

Personalised recommendations