Advertisement

The RePhrase Extended Pattern Set for Data Intensive Parallel Computing

  • Marco Danelutto
  • Tiziano De Matteis
  • Daniele De Sensi
  • Gabriele Mencagli
  • Massimo Torquati
  • Marco Aldinucci
  • Peter Kilpatrick
Article
  • 401 Downloads
Part of the following topical collections:
  1. Special Issue on High-Level Programming for Heterogeneous Parallel Systems

Abstract

We discuss the extended parallel pattern set identified within the EU-funded project RePhrase as a candidate pattern set to support data intensive applications targeting heterogeneous architectures. The set has been designed to include three classes of pattern, namely (1) core patterns, modelling common, not necessarily data intensive parallelism exploitation patterns, usually to be used in composition; (2) high level patterns, modelling common, complex and complete parallelism exploitation patterns; and (3) building block patterns, modelling the single components of data intensive applications, suitable for use—in composition—to implement patterns not covered by the core and high level patterns. We discuss the expressive power of the RePhrase extended pattern set and results illustrating the performances that may be achieved with the FastFlow implementation of the high level patterns.

Keywords

Parallel design patterns Data intensive computing Stream computing Algorithmic skeletons 

Notes

Acknowledgements

This work has been partially funded by the EU H2020-ICT-2014-1 Project No. 644235 RePhrase “Refactoring Parallel Heterogeneous Resource-Aware Applications” (http://www.reprhase-ict.eu).

References

  1. 1.
    A Streaming Process-based Skeleton Library for Erlang. https://github.com/ParaPhrase/skel (2015)
  2. 2.
    Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Pool evolution: a parallel pattern for evolutionary and symbolic computing. Int. J. Parallel Program. 44(3), 531–551 (2016)CrossRefGoogle Scholar
  3. 3.
    Aldinucci, M., Danelutto, M., Drocco, M., Kilpatrick, P., Misale, C., Peretti Pezzi, G., Torquati, M.: A parallel pattern for iterative stencil \(+\) reduce. J. Supercomput. (2016).  https://doi.org/10.1007/s11227-016-1871-z
  4. 4.
    Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow: High-level and efficient streaming on multicore. In: Pllana, S., Xhafa, F. (eds.) Programming Multi-core and Many-core Computing Systems, Parallel and Distributed Computing, Chapter 13. Wiley, New York (2017)Google Scholar
  5. 5.
    Aldinucci, M., Peretti Pezzi, G., Drocco, M., Spampinato, C., Torquati, M.: Parallel visual data restoration on multi-GPGPUs using stencil-reduce pattern. Int. J. High Perform. Comput. Appl. 29(4), 461–472 (2015)CrossRefGoogle Scholar
  6. 6.
    Andrade, H., Gedik, B., Wu, K.-L., Yu, P.S.: Scale-up strategies for processing high-rate data streams in system S. In: Proceedings of the 2009 IEEE Int’l Conference on Data Engineering, ICDE ’09, pp. 1375–1378. IEEE Computer Society (2009)Google Scholar
  7. 7.
    Andrade, H.C., Gedik, B., Turaga, D.S.: Fundamentals of Stream Processing: Application Design, Systems, and Analytics. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  8. 8.
    Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)CrossRefGoogle Scholar
  9. 9.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM Symposium on Principles of Database Systems, PODS ’02, pp. 1–16. ACM, New York (2002)Google Scholar
  10. 10.
    Danelutto, M., De Matteis, T., Mencagli, G., Torquati, M.: Data stream processing via code annotations. J. Supercomput. (2016).  https://doi.org/10.1007/s11227-016-1793-9
  11. 11.
    Danelutto, M., Torquati, M.: Structured parallel programming with “core” fastflow. In: Zsók, V., Horváth, Z., Csató, L. (eds.), Central European Functional Programming School, volume 8606 of LNCS, pp. 29–75. Springer, Berlin (2015)Google Scholar
  12. 12.
    De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators on data streams: an algorithmic skeleton approach. Int. J. Parallel Program. 45(2), 382–401 (2017)CrossRefGoogle Scholar
  13. 13.
    De Sensi, D., De Matteis, T., Torquati, M., Mencagli, G., Danelutto, M.: Bringing parallel patterns out of the corner: the p3 arsec benchmark suite. ACM Trans. Archit. Code Optim. 14(4), 33:1–33:26 (2017)CrossRefGoogle Scholar
  14. 14.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  15. 15.
    del Rio Astorga, D., Dolz, M.F., Sánchez, L.M., Blas, J.G., García, J.D.: A C\({++}\) generic parallel pattern interface for stream processing. In: Algorithms and Architectures for Parallel Processing—16th Int’l Conference, ICA3PP 2016, Granada, Spain, 14–16 December 2016, Proceedings, pp. 74–87 (2016)Google Scholar
  16. 16.
    Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21(2), 173–193 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pp. 36:1–36:11. IEEE Press, Piscataway (2008)Google Scholar
  18. 18.
    Emoto, K., Matsuzaki, K.: An automatic fusion mechanism for variable-length list skeletons in SkeTo. Int. J. Parallel Program. 42(4), 546–563 (2014)CrossRefGoogle Scholar
  19. 19.
    Enmyren, J., Kessler, C.W.: Skepu: a multi-backend skeleton programming library for multi-GPU systems. In: Proceedings of the Fourth Int’l Workshop on High-Level Parallel Programming and Applications, HLPP ’10, pp. 5–14. ACM (2010)Google Scholar
  20. 20.
    Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems and clusters. IJHPCN 7(2), 129–138 (2012)CrossRefGoogle Scholar
  21. 21.
    Korinth, J., de la Chevallerie, D., Koch, A.: An open-source tool flow for the composition of reconfigurable hardware thread pool architectures. In: 23rd IEEE Annual Int’l Symposium on Field-Programmable Custom Computing Machines, FCCM 2015, Vancouver, Canada, 2–6 May 2015, pp. 195–198. IEEE Computer Society (2015)Google Scholar
  22. 22.
    Laney, D.: 3D data management: controlling data volume, velocity, and variety. Technical report, META Group (2001)Google Scholar
  23. 23.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems, 1st edn. Manning Publications Co., Greenwich (2015)Google Scholar
  24. 24.
    Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st edn. Addison-Wesley Professional, Boston (2004)zbMATHGoogle Scholar
  25. 25.
    Microsoft. Task Parallel Library (TPL).: https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx (2017)
  26. 26.
    Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care. JAMA 309(13), 1351–1352 (2013)CrossRefGoogle Scholar
  27. 27.
    Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., Barabási, A.-L.: Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166+ (2015)CrossRefGoogle Scholar
  28. 28.
    Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc, Sebastopol (2007)Google Scholar
  29. 29.
    RePhrase. Report on defined use cases. RePhrase report D6.3 (2015)Google Scholar
  30. 30.
    Weiler, A., Grossniklaus, M., Scholl, M.H.: An evaluation of the run-time and task-based performance of event detection techniques for Twitter. Inf. Syst. 62(C), 207–219 (2016)CrossRefGoogle Scholar
  31. 31.
    White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc., Sebastopol (2009)Google Scholar
  32. 32.
    Wilson, G., Irvin, R.: Assessing and comparing the usability of parallel programming systems. Technical Report, University of Toronto, http://littlesvr.ca/masters/wp-content/uploads/2010/02/cowichan.pdf (1995)
  33. 33.
    Wright, A.: Big data meets big science. Commun. ACM 57(7), 13–15 (2014)CrossRefGoogle Scholar
  34. 34.
    Zhao, S., Chandrashekar, M., Lee, Y., Medhi, D.: Real-time network anomaly detection system using machine learning. In: 11th Int’l Conference on the Design of Reliable Communication Networks, DRCN 2015, Kansas City, MO, USA, 24–27 March 2015, pp. 267–270 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.University of PisaPisaItaly
  2. 2.University of TorinoTurinItaly
  3. 3.Queen’s University BelfastBelfastUK

Personalised recommendations