Advertisement

International Journal of Parallel Programming

, Volume 45, Issue 5, pp 1194–1213 | Cite as

Hadoop Based Parallel Binary Bat Algorithm for Network Intrusion Detection

  • P. NatesanEmail author
  • R. R. Rajalaxmi
  • G. Gowrison
  • P. Balasubramanie
Article

Abstract

In Internet applications, due to the growth of big data with more features, intrusion detection has become a difficult process in terms of computational complexity, storage efficiency and getting optimized solutions of classification through existing sequential computing environment. Using a parallel computing model and a nature inspired feature selection technique, a Hadoop Based Parallel Binary Bat Algorithm method is proposed for efficient feature selection and classification in order to obtain optimized detection rate. The MapReduce programming model of Hadoop improves computational complexity, the Parallel Binary Bat algorithm optimizes the prominent features selection and parallel Naïve Bayes provide cost-effective classification. The experimental results show that the proposed methodologies perform competently better than sequential computing approaches on massive data and the computational complexity is significantly reduced for feature selection as well as classification in big data applications.

Keywords

Hadoop Parallel Binary Bat MapReduce Feature selection Classification 

Notes

Acknowledgments

The authors would like to thank all anonymous reviewers for their constructive and insightful suggestions to improve this paper.

References

  1. 1.
    Abadeh, M.S., Habibi, J.: A hybridization of evolutionary fuzzy systems and ant colony optimization for intrusion detection. ISC Int. J. Inf. Secur. 2(1), 33–46 (2010)Google Scholar
  2. 2.
    Chu, C.T., Kim, S., Lin, Y.A.: MapReduce for machine learning on multicore. In: Proceedings of the 20th Conference on Advances in Neural Information Processing Systems, NIPS, pp. 281–288 (2006)Google Scholar
  3. 3.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  4. 4.
    Deng, D.Y., Yan, D.X., Wang, J.Y.: Parallel reducts based on attribute significance. In: Yu, J., Greco, S., Lingras, P., et al. (eds.) Rough Set and Knowledge Technology. Lecture Notes in Computer Science, vol. 6401, pp. 336–343. Springer, Berlin (2010)CrossRefGoogle Scholar
  5. 5.
    Depren, O., Topllar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl. 29, 713–722 (2005)CrossRefGoogle Scholar
  6. 6.
    Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gowrison, G., Ramar, K., Muneeswaran, K., Revathi, T.: Minimal complexity attack classification intrusion detection system. Appl. Soft Comput. 13, 921–927 (2013)CrossRefGoogle Scholar
  8. 8.
    Guo, C., Zhou, Y., Ping, Y., Zhang, Z., Liu, G., Yang, Y.: A distance sum-based hybrid method for intrusion detection. Appl. Intell. 40, 178–188 (2014). doi: 10.1007/s10489-013-0452-6 CrossRefGoogle Scholar
  9. 9.
    Hadoop MapReduce. http://hadoop.apache.org/ (2015)
  10. 10.
    Han, L.X., Liew, C.C., Hemert, J.V., Atkinson, M.: A generic parallel processing model for facilitating data mining and integration. Parallel Comput. 37, 157–171 (2011)CrossRefGoogle Scholar
  11. 11.
    Harb, H.M., Desuky, A.S.: Adaboost ensemble with genetic algorithm post optimization for intrusion detection. Int. J. Comput. Sci. Issues 8(5), 28–33 (2011)Google Scholar
  12. 12.
    Horng, S.-J., Ming-Yang, S., Chen, Y.-H., Kao, T.-W., Chen, R.-J., Lai, J.-L., Perkasa, C.D.: A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Syst. Appl. 38(1), 306–313 (2011)CrossRefGoogle Scholar
  13. 13.
    Hu, W., Hu, W.: Network-based intrusion detection using Adaboost algorithm. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05) (2005)Google Scholar
  14. 14.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  15. 15.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Computational Cybernetics and Simulation, pp 4104–4108 (1997)Google Scholar
  16. 16.
    Levin, I.: KDD-99 classifier learning contest LLSoft’s results overview. SIGKDD Explore. ACM SIGKDD (2000)Google Scholar
  17. 17.
    Mahmud, W.M., Agiza, H.N., Radwan, E.: Intrusion detection using rough sets based parallel genetic algorithm hybrid model. In: Proceedings of the World Congress on Engineering and Computer Science (WCECS-2009), USAGoogle Scholar
  18. 18.
    McNabb, A.W., Monson, C.K., Seppi, K.D.: Parallel PSO Using MapReduce. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, CEC, IEEE Computer Society, pp. 7–16 (2007)Google Scholar
  19. 19.
    Mirjalili, S., Mohd Hashim, S.Z.: BMOA: binary magnetic optimization algorithm. In: 2011 3rd International Conference on Machine Learning and Computing (ICMLC 2011), Singapore, 2011, pp. 201–206 (2011)Google Scholar
  20. 20.
    Mohammad, M.R., Dominik, S., Wróblewski, J.: Parallel island model for attribute reduction. In: Pal, S.K., et al. (eds.) PReMI 2005. LNCS 3776, pp. 714–719, Springer (2005)Google Scholar
  21. 21.
    Natesan, P., Balasubramanie, P., Gowrison, G.: Improving attack detection rate in network intrusion detection using adaboost algorithm with multiple weak classifiers. J. Inf. Comput. Sci. 8(8), 2239–2251 (2012)Google Scholar
  22. 22.
    Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J.: Modelling intrusion detection system using hybrid systems. J. Netw. Comput. Appl. 30, 114–132 (2007)CrossRefGoogle Scholar
  23. 23.
    Pfahringer, B.: Winning the KDD99 classification cup: bagged boosting. SIGKDD Explor. 1(2), 67–75 (2000)CrossRefGoogle Scholar
  24. 24.
    Qian, J., Miao, D., Zhang, Z., Yue, X.: Parallel attribute reduction algorithms using MapReduce. J. Inf. Sci. 279, 671–690 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9, 727–745 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Srinivasan, A., Faruquie, T.A., Sachindra, J.: Data and task parallelism in ILP using MapReduce. Mach. Learn. 86(1), 141–168 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sung, A.H., Mukkamala, S.: The feature selection and intrusion detection problems. In Proceedings of advances in computer science—ASIAN 2004: higher-level decision making. In: 9th Asian Computing Science Conference, vol. 3321, pp. 468-482 (2004)Google Scholar
  28. 28.
    Tsang, C.H., Kwong, S.: Multi-agent intrusion detection system in industrial network using ant colony clustering approach and unsupervised feature extraction. In: Proceedings of the IEEE International Conference on Industrial Technology 2005(ICIT2005), pp. 51–56 (2005)Google Scholar
  29. 29.
    Venkatachalam, V., Selvan, S.: Performance comparison of intrusion detection system classifiers using various feature reduction techniques. Int. J. Simul. 9(1), 30–39 (2008)Google Scholar
  30. 30.
    Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms using MapReduce. In: Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications, IEEE Computer Society, pp. 13–18 (2009)Google Scholar
  31. 31.
    Wang, G., Hao, J., Ma, J., Huang, L.: A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Syst. Appl. 37(9), 6225–6232 (2010)CrossRefGoogle Scholar
  32. 32.
    Weaver, J.: A scalability metric for parallel computations on large, growing datasets (like the web). In: Proceedings of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (2012)Google Scholar
  33. 33.
    Weiming, H., Wei, H., Maybank, S.: AdaBoost-based algorithm for network intrusion detection. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(2), 577–583 (2008)CrossRefGoogle Scholar
  34. 34.
    Xiang, C., Chong, M.Y., Zhu, H.L.: Design of multiple-level tree classifiers for intrusion detection system. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, December, Singapore, pp. 872–877 (2004)Google Scholar
  35. 35.
    Xiang, C., Yong, P.C., Meng, L.S.: Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett. 29, 918–924 (2008)CrossRefGoogle Scholar
  36. 36.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R., et al. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, pp. 65–74. Springer, Berlin (2010)CrossRefGoogle Scholar
  37. 37.
    Zhao, W.Z., Ma, H.F., He, Q.: Parallel K-means clustering based on MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing, CloudCom2009, pp. 674–679. Springer, Berlin (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Natesan
    • 1
    Email author
  • R. R. Rajalaxmi
    • 1
  • G. Gowrison
    • 2
  • P. Balasubramanie
    • 1
  1. 1.Department of Computer Science and EngineeringKongu Engineering CollegePerundurai, ErodeIndia
  2. 2.Department of Electronics and Communication EngineeringInstitute of Road and Transport TechnologyErodeIndia

Personalised recommendations