Advertisement

Nearest Neighbor Searches on the GPU

A Massively Parallel Approach for Dynamic Point Clouds
  • Pedro Leite
  • João Marcelo Teixeira
  • Thiago FariasEmail author
  • Bernardo Reis
  • Veronica Teichrieb
  • Judith Kelner
Article

Abstract

We introduce a GPU grid-based data structure for massively parallel nearest neighbor searches for dynamic point clouds. The implementation provides real-time performance and it is executed on GPU, both grid construction and nearest neighbors (approximate or exact) searches. This minimizes the memory transfer between device and system memories, improving overall performance. The proposed algorithm may be used across different applications with static and dynamic scenarios. Moreover, our data structure supports three-dimensional point clouds and given its dynamic nature, the user can change the data structure’s parameters at runtime. The same applies to the number of neighbors to be found. Performance comparisons were made against previous works, endorsing the benefits of our solution. Finally, we were able to develop a real-time Point-Based Rendering application for validation of the data structure. Its drawbacks and data distribution’s impact on performance were analysed and some directions for further investigation are given.

Keywords

Nearest neighbor query Massive parallel programming KNN ANN Point-Based Rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pharr M., Humphreys G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  2. 2.
    Jensen H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Natick (2001)zbMATHGoogle Scholar
  3. 3.
    Alexa, M., Gross, M., Pauly, M., Pfister, H.: Stamminger, Marc., Zwicker, Matthias.: Point-based computer graphics. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes, p. 7. ACM, New York (2004)Google Scholar
  4. 4.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 457–462. ACM, New York (2004)Google Scholar
  5. 5.
    Lacoste, J., Boubekeur, T., Jobard, B., Schlick, C.: Appearance preserving octree-textures. In: GRAPHITE ’07: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 87–93. ACM, New York (2007)Google Scholar
  6. 6.
    Teschner M., Heidelberger B., Müller, M., Pomeranets, Danat., Gross M.: Optimized spatial hashing for collision detection of deformable objects. In: Vision, Modeling, Visualization (VMV), pp. 47–54 (2003)Google Scholar
  7. 7.
    Curtis, S., Tamstorf, R., Manocha, D.: Fast collision detection for deformable models using representative-triangles. In: I3D ’08: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, pp. 61–69. ACM, New York (2008)Google Scholar
  8. 8.
    Pantazopoulos I., Tzafestas S.: Occlusion culling algorithms: a comprehensive survey. J. Intell. Robot. Syst. 35(2), 123–156 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Knuth D.: Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, Massachusetts (1998)Google Scholar
  10. 10.
    Cover T., Hart P.: Nearest neighbor pattern classification. Inf. Theory IEEE Trans. 13(1), 21–27 (1967)zbMATHCrossRefGoogle Scholar
  11. 11.
    Safar M.: K nearest neighbor search in navigation systems. Mob. Inf. Syst. 1(3), 207–224 (2005)Google Scholar
  12. 12.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Visualization Conference, pp. 21–28. IEEE (2001)Google Scholar
  13. 13.
    Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann, B., Müller, H. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer (2003)Google Scholar
  14. 14.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: VIS ’02: Proceedings of the Conference on Visualization ’02, pp. 163–170. IEEE Computer Society, Washington (2002)Google Scholar
  15. 15.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (SIGGRAPH ’07 papers), San Diego, CA, vol. 26, issue 3, art. no. 48. ACM Press, New York (2007)Google Scholar
  16. 16.
    Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data. In: SCG ’03: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 322–328. ACM, New York (2003)Google Scholar
  17. 17.
    Clarenz, U., Rumpf, M., Telea, A.: Finite elements on point based surfaces. In: Symposium of Point Based Graphics 2004 (2004)Google Scholar
  18. 18.
    Sankaranarayanan J., Samet H., Varshney A.: A fast all nearest neighbor algorithm for applications involving large point-clouds. Comput. Graph. 31(2), 157–174 (2007)CrossRefGoogle Scholar
  19. 19.
    Samet H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann, San Francisco (2005)Google Scholar
  20. 20.
    Connor, M., Kumar, P.: Parallel construction of k-nearest neighbor graphs for point clouds. In: Proceedings of Volume and Point-Based Graphics, pp. 25–32. IEEE VGTC (2008)Google Scholar
  21. 21.
    Lin, K.-I., Yang, C.: The ANN-tree: an index for efficient approximate nearest neighbor search. In: DASFAA ’01: Proceedings of the 7th International Conference on Database Systems for Advanced Applications, pp. 174–181. IEEE Computer Society, Washington (2001)Google Scholar
  22. 22.
    Arya S., Mount D.M., Netanyahu N.S., Silverman R., Angela Y.W.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu. In: CVPR Workshop on Computer Vision on GPU, Anchorage (2008)Google Scholar
  24. 24.
    Guennebaud G., Germann M., Gross M.: Dynamic sampling and rendering of algebraic point set surfaces. Comput. Graph. Forum 27(2), 653–662 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time KD-tree construction on graphics hardware. In: SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008 papers, pp. 1–11. ACM, New York (2008)Google Scholar
  26. 26.
    Leite, P.J.S., Teixeira, J.M.X.N., de Farias, T.S.M.C., Teichrieb, V., Kelner, J.: Massively parallel nearest neighbor queries for dynamic point clouds on the GPU. In: Proceedings of the 2009 21st International Symposium on Computer Architecture and High Performance Computing, SBAC- PAD ’09, pp. 19–25. IEEE Computer Society, Washington (2009)Google Scholar
  27. 27.
    Mark H.: Optimizing parallel reduction in CUDA. http://www.nvidia.com/content/cudazone/cuda_sdk/Data-Parallel_Algorithms.html (2009)
  28. 28.
    NVIDIA.: Compute unified device architecture programming guide. http://www.nvidia.com/cuda (2009)
  29. 29.
    Farias T.S.M.C., TeixeiraJoao Marcelo N.X., Leite Pedro J.S., Almeida G.F., Almeida Mozart W.S., Teichrieb V., Kelner J.: High performance computing: cuda as a supporting technology for next generation augmented reality applications. RITA 16(1), 26 (2009)Google Scholar
  30. 30.
    Shubhabrata S., Mark H., Zhang, Y., Owens, J.D.: Scan primitives for GPU computing. In: GH ’07: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pp. 97–106. Eurographics Association, Aire-la-Ville (2007)Google Scholar
  31. 31.
    Eng J.: Sample size estimation: how many individuals should be studied?. Radiology 227(2), 309–313 (2003)CrossRefGoogle Scholar
  32. 32.
    Anderson J.A., Lorenz C.D., Travesset A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008)zbMATHCrossRefGoogle Scholar
  33. 33.
    Levoy, M., Whitted, T.: The use of points as a display primitive. Technical Report 85-022, University of North Carolina at Chapel Hill (1985)Google Scholar
  34. 34.
    Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting on today’s GPUs. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, pp. 17–24 (2005)Google Scholar
  35. 35.
    Botsch, M., Kobbelt, L.: High-quality point-based rendering on modern gpus. In: Pac. Conf. Comput. Graph. Appl., pp. 335–343 (2003)Google Scholar
  36. 36.
    Guennebaud, G., Paulin, M.: Efficient screen space approach for hardware accelerated surfel rendering. In: Vision, Modeling and Visualization, pp. 485–495. IEEE Signal Processing Society (2003)Google Scholar
  37. 37.
    Botsch, M., Spernat, M., Kobbelt, L.: Phong splatting. In: Proceedings of Symposium on Point-based Graphics, pp. 25–32 (2004)Google Scholar
  38. 38.
    de Farias, T.S.M.C., Almeida, M.W.S., Teixeira Joao, M.X.N., Teichrieb, V., Kelner, J.: A high performance massively parallel approach for real time deformable body physics simulation. In: Comput. Archit. High Perform. Comput. Symp., pp. 45–52 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pedro Leite
    • 1
  • João Marcelo Teixeira
    • 1
  • Thiago Farias
    • 1
    Email author
  • Bernardo Reis
    • 1
  • Veronica Teichrieb
    • 1
  • Judith Kelner
    • 1
  1. 1.Computer Science CenterFederal University of PernambucoRecifeBrazil

Personalised recommendations