Advertisement

Simulation-Based Performance Prediction for Large Parallel Machines

  • Gengbin ZhengEmail author
  • Terry Wilmarth
  • Praveen Jagadishprasad
  • Laxmikant V. Kalé
Article

Abstract

We present a performance prediction environment for large scale computers such as the Blue Gene machine. It consists of a parallel simulator, BigSim, for predicting performance of machines with a very large number of processors, and BigNetSim, which incorporates a pluggable module of a detailed contention-based network model. The simulators provide the ability to make performance predictions for very large machines such as Blue Gene/L. We illustrate the utility of our simulators using validation and prediction studies of several applications using smaller numbers of processors for simulations.

Keywords

Simulation-based performance prediction large parallel machines computation modeling CHARMH adaptive MPI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bhandarkar and L. V. Kalé, A Parallel Framework for Explicit FEM. In M. Valero, V. K. Prasanna, and S. Vajpeyam, editors, in Proc. of the International Conference on High Performance Computing (HiPC 2000), Lecture Notes in Computer Science, Vol 1970, p. 385–395, Springer Verlag (December 2000)Google Scholar
  2. 2.
    M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S. Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas, Design and Analysis of the Bluegene/l Torus Interconnection Network. Technical report, IBM Research Division, T.J. Watson Research Center, P.O. Box 218, York-town Heights, NY 10598 (2003)Google Scholar
  3. 3.
    C. Ding and Y. He, A Ghost Cell Expansion Method for Reducing Communications in Solving pde Problems, in Super-Computing 2001 Technical Papers, 2001Google Scholar
  4. 4.
    C. Huang, O. Lawlor, and L. V. Kalé, Adaptive MPI, in Proc. of the 16th International Workshop on Languages and Compilers for Parallel Computing (LCPC 03), College Station, Texas (October 2003)Google Scholar
  5. 5.
    D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto, Time Warp Operating System, in Proc. of the eleventh ACM Symposium on Operating systems principles, pp. 77–93, ACM Press, 1987Google Scholar
  6. 6.
    Kale L., Ramkumar B., Saletore V., Sinha A.B. (1993). Prioritization in parallel symbolic computing. In: Ito T., Halstead R. (ed). editors in Lecture Notes in Computer Science. Vol. 748, p. 12–41, Springer-Verlag,Google Scholar
  7. 7.
    Kalé L., Skeel R., Bhandarkar M., Brunner R., Gursoy A., Krawetz N., Phillips J., Shinozaki A., Varadarajan K., Schulten K. (1999). NAMD2: Greater Scalability for Parallel Molecular Dynamics. J. Comput. Phys. 151: 283–312Google Scholar
  8. 8.
    L.V. Kalé, The Virtualization Model of Parallel Programing: Runtime Optimizations and the State of Art, in LACSI 2002, Albuquerque (October 2002)Google Scholar
  9. 9.
    Lawlor, O.S., Kalé, L.V. 2003Supporting Dynamic Parallel Object ArraysConcurrency Comput. Pract. Exp.15371393Google Scholar
  10. 10.
    J. C. Phillips, G. Zheng, S. Kumar, and L.V. Kalé, NamD: Biomolecular Simulation on Thousands of Processors, in Proc. of SC 2002, Baltmore, MD (September 2002)Google Scholar
  11. 11.
    N. Saboo, A. K. Singla, J. M. Unger, and L. V. Kalé, Emulating Petaflops Machines and Blue Gene, in Workshop on Massively Parallel Processing (IPDPS’01), San Francisco, CA (April 2001)Google Scholar
  12. 12.
    . Wilmarth and L. V. Kalé, Pose: Getting Over Granisize in Parallel Discrete Event Simulation, 2004 Int. Conference on Parallel Processing, p. (to appear) (August 2004)Google Scholar
  13. 13.
    G. Zheng, G. Kakulapati, and L. V. Kalé, Bigsim: A Parallel Simulator for Performance Prediction of Extremely Large Parallel Machines, in 18th Int. Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico (April 2004)Google Scholar
  14. 14.
    G. Zheng, A. K. Singla, J. M. Unger, and L. V. Kalé, A Parallel-object Programming Model for Petaflops Machines and Blue Gene/Cyclops, NSF Next Generation Systems Program Workshop, 16th Int. Parallel and Distributed Processing Symposium (IPDPS), Fort Lauderdale, Fl (April 2002.)Google Scholar
  15. 15.
    G. Zheng, T. Wilmarth, O. S. Lawlor, L. V. Kalé, S. Adve, D. Padua, and P. Geubelle. Performance Modelling and Programming Environments for Petaflops Computers and the Blue Gene Machine, in NSF Next Generation Systems Program Workshop, 18th Int. Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, IEEE Press (April 2004)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gengbin Zheng
    • 1
    Email author
  • Terry Wilmarth
    • 1
  • Praveen Jagadishprasad
    • 1
  • Laxmikant V. Kalé
    • 1
  1. 1.Department of Computer ScienceUniversity of IIlinois at Urbana-ChampaignUSA

Personalised recommendations