Skip to main content
Log in

Effect of Preparation Temperature, Surfactant, and Nanoparticles Concentration on the Effective Thermophysical Properties of Multi-walled Carbon Nanotubes’ Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This research investigates the thermophysical properties and physical stability of multi-walled carbon nanotubes (MWCNTs)–water nanofluids that are manufactured through the two-step controlled sonicator bath temperature method. The nanofluids are prepared with water as the basefluids, and MWCNTs of 0.01–0.10 vol%. A bath-type ultrasonicator was employed to disperse the nanomaterials within the as-prepared basefluid. The sonication process, for all as-fabricated suspensions, lasted for 90 min and the device bath temperature was controlled in the range of 10 °C–50 °C. Furthermore, the samples were then characterized in terms of their thermophysical properties as well as their short and long physical stability. The results have indicated that the effective density of the suspension was higher than that of the basefluid, and that this property decreases with the increase in the production temperature. As for the effective specific heat capacity, that property was shown to be highly sensitive to the MWCNTs and SDS concentrations. Furthermore, the fabrication temperature was shown to be a dominant parameter when it came to both the effective thermal conductivity and viscosity, where it caused the first property to increase while reducing the second one. In terms of the surfactant concentration, the physical stability results have shown that low surfactant concentration can only physically stabilize the dispersion for 24 h, whereas the concentrations higher than 1:1 surfactant to MWCNTs ratio caused the nanofluids to maintain their stability for up to 7 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data can be provided upon request from any of the authors.

References

  1. S. Almurtaji, N. Ali, J.A. Teixeira, A. Addali, On the role of nanofluids in thermal-hydraulic performance of heat exchangers—a review. Nanomaterials (Basel) 10, 734 (2020)

    Article  Google Scholar 

  2. V. Kumar, A.K. Tiwari, S.K. Ghosh, Application of nanofluids in plate heat exchanger: a review. Energy Convers. Manage. 105, 1017–1036 (2015)

    Article  Google Scholar 

  3. K. Thulukkanam, Heat Exchanger Design Handbook (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  4. H. Masuda, A. Ebata, K. Teramae, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)

    Article  Google Scholar 

  5. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in Conference: 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; Other Information: PBD: Oct 1995, Argonne National Lab., IL (United States), 1995, pp. Medium: ED; Size: 8 pp

  6. N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. 2018, 1–33 (2018)

    Google Scholar 

  7. E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Article  Google Scholar 

  8. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011)

    Article  Google Scholar 

  9. N. Sezer, M.A. Atieh, M. Koç, A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 344, 404–431 (2019)

    Article  Google Scholar 

  10. F. Mashali, E.M. Languri, J. Davidson, D. Kerns, W. Johnson, K. Nawaz, G. Cunningham, Thermo-physical properties of diamond nanofluids: a review. Int. J. Heat Mass Transf. 129, 1123–1135 (2019)

    Article  Google Scholar 

  11. N. Ali, A.M. Bahman, N.F. Aljuwayhel, S.A. Ebrahim, S. Mukherjee, A. Alsayegh, Carbon-based nanofluids and their advances towards heat transfer applications—a review. Nanomaterials 11, 1628 (2021)

    Article  Google Scholar 

  12. A. Alsayegh, N. Ali, Gas turbine intercoolers: introducing nanofluids—a mini-review. Processes 8, 1572 (2020)

    Article  Google Scholar 

  13. A. Naser, J.A. Teixeira, A. Addali, New pH correlations for stainless steel 316L, alumina, and copper(I) oxide nanofluids fabricated at controlled sonication temperatures. J. Nano Res. 58, 125–138 (2019)

    Article  Google Scholar 

  14. N. Ali, J.A. Teixeira, A. Addali, Aluminium nanofluids stability: a comparison between the conventional two-step fabrication approach and the controlled sonication bath temperature method. J. Nanomater. 2019, 1–9 (2019)

    Article  Google Scholar 

  15. M.M. Tawfik, Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew. Sustain. Energy Rev. 75, 1239–1253 (2017)

    Article  Google Scholar 

  16. T. Yiamsawas, O. Mahian, A.S. Dalkilic, S. Kaewnai, S. Wongwises, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl. Energy 111, 40–45 (2013)

    Article  Google Scholar 

  17. K. Walters, W.M. Jones, Measurement of viscosity, in Instrumentation Reference Book. ed. by W. Boyes (Butterworth-Heinemann, Boston, 2010), pp. 69–75

    Chapter  Google Scholar 

  18. G. Żyła, M. Cholewa, On unexpected behavior of viscosity of diethylene glycol-based MgAl2O4 nanofluids. RSC Adv. 4, 26057–26062 (2014)

    Article  ADS  Google Scholar 

  19. G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010)

    Article  Google Scholar 

  20. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)

    Article  ADS  Google Scholar 

  21. B. Jozwiak, G. Dzido, E. Zorebski, A. Kolanowska, R. Jedrysiak, J. Dziadosz, M. Libera, S. Boncel, M. Dzida, Remarkable thermal conductivity enhancement in carbon-based ionanofluids: effect of nanoparticle morphology. ACS Appl. Mater. Interfaces 12, 38113–38123 (2020)

    Article  Google Scholar 

  22. M.-J. Li, M.-J. Li, Y.-L. He, W.-Q. Tao, A novel semi-empirical model on predicting the thermal conductivity of diathermic oil-based nanofluid for solar thermal application. Int. J. Heat Mass Transf. 138, 1002–1013 (2019)

    Article  Google Scholar 

  23. M. Xing, J. Yu, R. Wang, Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int. J. Therm. Sci. 104, 404–411 (2016)

    Article  Google Scholar 

  24. M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int. Commun. Heat Mass Transf. 58, 176–183 (2014)

    Article  Google Scholar 

  25. M. Hemmat Esfe, H. Rahimi Raki, M.R. Sarmasti Emami, M. Afrand, Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 342, 808–816 (2019)

    Article  Google Scholar 

  26. A. Anson-Casaos, J.C. Ciria, O. Sanahuja-Parejo, S. Victor-Roman, J.M. Gonzalez-Dominguez, E. Garcia-Bordeje, A.M. Benito, W.K. Maser, The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Phys. Chem. Chem. Phys. 22, 11474–11484 (2020)

    Article  Google Scholar 

  27. J.C. Maxwell, The Scientific Papers of James Clerk Maxwell (Cambridge University Press, New York, 1890)

    MATH  Google Scholar 

  28. H. Yu, S. Hermann, S.E. Schulz, T. Gessner, Z. Dong, W.J. Li, Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem. Phys. 408, 11–16 (2012)

    Article  Google Scholar 

  29. G. Xia, H. Jiang, R. Liu, Y. Zhai, Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int. J. Therm. Sci. 84, 118–124 (2014)

    Article  Google Scholar 

  30. L.C. Wei, Heat Transfer Experiment on Forced Convection of a Nanofluid in a Microchannel Heat Sink (Department of Mechanical Engineering, National Cheng Kung University, Tainan, 2007)

    Google Scholar 

  31. I. Lillo, E. Pérez, S. Moreno, M. Silva, Process heat generation potential from solar concentration technologies in Latin America: the case of Argentina. Energies 10, 383 (2017)

    Article  Google Scholar 

  32. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    Article  ADS  Google Scholar 

  33. W. Yu, H.Q. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 17, 1–17 (2012)

    Google Scholar 

  34. N. Arora, S. Mukherjee, P.C. Mishra, S. Chakrabarty, P. Chaudhuri, Thermal conductivity enhancement of silica nanofluids for ultrafast cooling applications: statistical modeling and economic analysis. Int. J. Thermophys. 42, 62 (2021)

    Article  ADS  Google Scholar 

  35. K. Palanisamy, P.C. Mukesh Kumar, Experimental investigation on convective heat transfer and pressure drop of cone helically coiled tube heat exchanger using carbon nanotubes/water nanofluids. Heliyon 5, e01705 (2019)

    Article  Google Scholar 

  36. H. Sandhu, D. Gangacharyulu, An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Part. Sci. Technol. 35, 547–554 (2016)

    Article  Google Scholar 

  37. H. Khani, O. Moradi, Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J. Nanostruct. Chem. 3, 73 (2013)

    Article  Google Scholar 

  38. A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, 1–23 (2012)

    Article  Google Scholar 

  39. X. Ai, J. Lin, Y. Chang, L. Zhou, X. Zhang, G. Qin, Phase modification of copper phthalocyanine semiconductor by converting powder to thin film. Appl. Surf. Sci. 428, 788–792 (2018)

    Article  ADS  Google Scholar 

  40. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors. Optik 153, 31–42 (2018)

    Article  ADS  Google Scholar 

  41. M. Rabiee, H. Mirzadeh, A. Ataie, Processing of Cu–Fe and Cu–Fe–SiC nanocomposites by mechanical alloying. Adv. Powder Technol. 28, 1882–1887 (2017)

    Article  Google Scholar 

  42. S. Minaei, M. Haghighi, N. Jodeiri, H. Ajamein, M. Abdollahifar, Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming. Adv. Powder Technol. 28, 842–853 (2017)

    Article  Google Scholar 

  43. D.K. Singh, P.K. Iyer, P.K. Giri, Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam. Relat. Mater. 19, 1281–1288 (2010)

    Article  ADS  Google Scholar 

  44. R. Baboian, Corrosion Tests and Standards: Application and Interpretation (ASTM international, West Conshohocken, 2005)

    Book  Google Scholar 

  45. D. Cabaleiro, C. Gracia-Fernández, J.L. Legido, L. Lugo, Specific heat of metal oxide nanofluids at high concentrations for heat transfer. Int. J. Heat Mass Transf. 88, 872–879 (2015)

    Article  Google Scholar 

  46. M.A. Sabiha, R.M. Mostafizur, R. Saidur, S. Mekhilef, Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transf. 93, 862–871 (2016)

    Article  Google Scholar 

  47. S. Simpson, A. Schelfhout, C. Golden, S. Vafaei, Nanofluid thermal conductivity and effective parameters. Appl. Sci. 9, 87 (2019)

    Article  Google Scholar 

  48. M.H. Ahmadi, A. Mirlohi, M. Alhuyi Nazari, R. Ghasempour, A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)

    Article  Google Scholar 

  49. R.M. Sarviya, V. Fuskele, Review on thermal conductivity of nanofluids. Mater. Today Proc. 4, 4022–4031 (2017)

    Article  Google Scholar 

  50. J.R. Eggers, S. Kabelac, Nanofluids revisited. Appl. Therm. Eng. 106, 1114–1126 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help provided by our institutes, which include the starting materials and required equipment.

Funding

This work was financially supported by Cranfield University and the Kuwait Institute for Scientific Research (KISR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almurtaji, S., Ali, N., Teixeira, J.A. et al. Effect of Preparation Temperature, Surfactant, and Nanoparticles Concentration on the Effective Thermophysical Properties of Multi-walled Carbon Nanotubes’ Nanofluids. Int J Thermophys 42, 168 (2021). https://doi.org/10.1007/s10765-021-02916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02916-8

Keywords

Navigation