Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of Ancient Paper and Detection of Microbiological Contamination Using Photoacoustic Technique

  • 39 Accesses

Abstract

Ancient documents are of historical interest because they contain valuable information for future generations. One of the most common causes of documents damage and degradation is due to the presence of fungi. Therefore, it is very important to protect them from these microorganisms. In this work, TiO2 nanoparticles (TiO2NPs) were synthesized and used along with UV treatment for application as a potential antifungal against paper damage. Transmission electron microscopy (TEM) showed an average size of 70 nm for the nanoparticles. From scanning electron microscopy (SEM) micrographs, different structures of fungi in damaged cellulose fibers were observed. Energy dispersive X-ray spectrometry (EDS) detected the presence of elements related to organic and inorganic materials. Photoacoustic spectroscopy (PAS) as a non-invasive and versatile technique was used to study ancient documents deterioration presented in this manuscript. Through this technique, pigments produced by fungi in the wavelength between 277 nm and 700 nm were detected, being PAS an important characterization tool to study biodeterioration caused by fungi.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. Sequeira, E. Cabrita, M. Macedo, Int. Biodeterior. Biodegrad. 74, 67 (2012)

  2. 2.

    E. Neves, S. Schafer, A. Phillips, J. Canejo, M. Macedo, Int. Biodeterior. Biodegrad. 63, 267 (2009)

  3. 3.

    A. Michaelsen, G. Piñar, M. Montanari, F. Pinzari, Int. Biodeterior. Biodegrad. 63, 161 (2009)

  4. 4.

    S. Manente, A. Micheluz, R. Ganzerla, G. Ravagnan, A. Gambaro, Int. Biodeterior. Biodegrad. 74, 99 (2012)

  5. 5.

    K. Karakasidou, K. Nikolouli, G.D. Amoutzias, A. Pournou, C. Manassis, G. Tsiamis, D. Mossialos, MicrobiologyOpen 7, e596 (2018)

  6. 6.

    B. Gutarowska, J. Skora, K. Zduniak, D. Rembisz, Int. Biodeterior. Biodegrad. 68, 7 (2012)

  7. 7.

    A. Michaelsen, F. Pinzari, N. Barbabietola, G. Piñar, Int. Biodeterior. Biodegrad. 84, 333 (2013)

  8. 8.

    L. Lang-Dong, H. Ching Min, C. Been-Huang, T. Ming-Jer, Jpn. Wood Res. Soc. 53, 121 (2007)

  9. 9.

    M. Manso, A. Cardeira, M. Silva, A. Le Gac, S. Penssanha, M. Guerra, A. Calderia, A. Candeira, M. Carvalho, Appl. Phys. 118, 1107 (2015)

  10. 10.

    D. Melo, S. Sequeira, J. Lopes, M. Macedo, J. Cult. Herit. 35, 161 (2018)

  11. 11.

    J. Reis Celestino, L. Ennes De Carvalho, M. Da Paz Lima, A. Moura Lima, M. Morishi Ogusku, J. Braga De Souza, Process Biochem. 49, 569 (2014)

  12. 12.

    N. Suwannarach, J. Kumla, Y. Nishizaki, N. Sugimoto, J. Meerak, K. Matsui, S. Lumyong, Appl. Microbiol. Biotechnol. 103, 1 (2019)

  13. 13.

    M. Fouillaud, M. Venkatachalam, M. Llorente, H. Magalon, P. Cuet, L. Dufossé, Mycol. J. 3, 36 (2017)

  14. 14.

    J.L. Jiménez-Pérez, J. Jiménez-Pérez, A. Bracamontes-Cruz, A. Cruz-Orea, J.G. Mendoza-Alvarez, A. Gordilllo-Sol, H. Yee-Madeira, Int. J. Thermophys. 27, 1898 (2006)

  15. 15.

    J.L. Jiménez Pérez, J. Jiménez Pérez, A. Bracamontes Cruz, A. Cruz Orea, J.G. Mendoza Alvarez, Int. J. Thermophys. 25, 503 (2004)

  16. 16.

    R. López Martínez, L. Méndez Tovar, F. Hernández Hernández, R. Castañón Olivares, Micología médica Procedimientos para el diagnóstico de laboratorio (Trillas, Mexico, 2012)

  17. 17.

    H. Arai, Int. Biodeterior. Biodegrad. 46, 181 (2000)

  18. 18.

    S. Londhe, S. Patil, K. Krishnadas, A. Sawant, R. Yelchuri, V. Chada, Int. Biodeterior. Biodegrad. 108, 57 (2019)

  19. 19.

    M. Florian, L. Manning, Int. Biodeterior. Biodegrad. 46, 205 (2000)

  20. 20.

    R. Vijayalakshmi, V. Rajendran, Res. L. Arch. Appl. Sci. Res. 4, 1183 (2012)

  21. 21.

    C. Hernández-Aguilar, A. Domínguez-Pacheco, A. Cruz-Orea, R. Ivanov, J. Spectrosc. 5920948, 1 (2019)

  22. 22.

    J. Gould, Plant Physiol. 70, 1521 (1982)

  23. 23.

    J.A. Bonifaz, Micología médica básica (Mc Graw Hill Interamericana, Mexico, 2015)

  24. 24.

    S. Stange, S. Steudler, H. Delenk, A. Werner, T. Walther, A. Wagenführ, J. Fungi 40, 5 (2019)

  25. 25.

    G. Weber, A. Boonloed, K. Naas, M. Koesdjojo, V. Remcho, S. Robinson, Curr. Res. Environ. Appl. Mycol. 6, 218 (2016)

  26. 26.

    B. Narendrababu, S. Shishupala, J. Appl. Biol. Biotechnol. 5, 53 (2017)

  27. 27.

    F. Stodola, K. Raper, D. Fennell, Nature 17, 773 (1951)

  28. 28.

    V. Švedas, A.S. Dementév, E. Murauskas, N. Slavinskis, Lith. J. Phys. 47, 221 (2007)

  29. 29.

    D. Nikitichev, W. Xia, E. Hill, C. Mosse, T. Perkins, K. Konyn, S. Ourselin, A. Desjardins, T. Vercauteren, Phys. Educ. 51, 045015 (2016)

  30. 30.

    G. Bonifazi, G. Capobianco, C. Pelosi, S. Serranti, J. Imaging 5, 8 (2019)

  31. 31.

    M. Mahajan, S. Kamalapur, Asian J. Comput. Sci. Eng. 2, 6 (2016)

Download references

Author information

Correspondence to J. L. Jiménez-Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castillo-Hernández, D., Sánchez-Ramírez, F., Jiménez-Pérez, J.L. et al. Study of Ancient Paper and Detection of Microbiological Contamination Using Photoacoustic Technique. Int J Thermophys 41, 36 (2020). https://doi.org/10.1007/s10765-020-2612-3

Download citation

Keywords

  • Ancient documents
  • Antibacterial
  • Contamination
  • Fungi
  • Photoacoustic spectroscopy
  • TiO2 nanoparticles