Advertisement

Experimental Measurements and Correlation of Liquid Extraction of o-Xylene from Octane Using Mixed Solvents Including Dimethyl Sulfoxide and Methanol at 298.15 K

  • Fadoua FarghiEmail author
  • Mohammed Kaddami
Article
  • 17 Downloads

Abstract

The purpose of the present work is to study the effect of adding different mass quantities of a light alcohol (methanol) to dimethyl sulfoxide, in order to extract o-xylene from octane. Experimental liquid–liquid equilibrium data for the quaternary systems {octane + o-xylene + dimethyl sulfoxide + (0.2, 0.4, 0.6, and 0.8) mass fraction of methanol} were determined at T = 298.15 K under atmospheric pressure. For the four quaternary systems, the selectivity and distribution coefficient of o-xylene were applied to assess the efficacy of (dimethyl sulfoxide + mass fraction of methanol) as mixed solvents. The triangular phase diagrams for all studied systems were sketched. The Non Random Two-Liquid activity coefficient model was employed to correlate experimental results and fitting parameters were reported.

Keywords

Dimethyl sulfoxide Liquid–liquid equilibrium Methanol NRTL model Tetrahedral diagram 

Notes

Acknowledgements

The authors are grateful to the Analyses and Characterization Centre of Kadi AYYAD University, Marrakech-Morocco for their materiel facilities.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.A. Ahmad, R.S. Tanwar, R.K. Gupta, A. Khanna, Fluid Phase Equilib. 220, 189–198 (2004)CrossRefGoogle Scholar
  2. 2.
    R.S. Santiago, M. Aznar, Fluid Phase Equilib. 259, 71–76 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Lin, T. Tsai, T. Lin, C. Yang, J. Chem. Eng. Data 53, 760–764 (2008)CrossRefGoogle Scholar
  4. 4.
    U.K.A. Kumar, R. Mohan, J. Chem. Eng. Data 56, 485–490 (2011)CrossRefGoogle Scholar
  5. 5.
    S.H. Ali, H.M.S. Lababidi, S.Q. Merchant, M.A. Fahim, Fluid Phase Equilib. 214, 25–38 (2003)CrossRefGoogle Scholar
  6. 6.
    J.J. Li, Q.S. Zhao, X.D. Tang, K.L. Xiao, J.Y. Yuan, Chem. Eng. Data 59, 3307–3313 (2014)CrossRefGoogle Scholar
  7. 7.
    S.M.R.S. Ghannad, M.N. Lotfollahi, A.H. Asl, J. Chem. Thermodyn. 43, 329–333 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Kaewchada, A. Jaree, Chem. Eng. Res. Des. 117, 784–791 (2017)CrossRefGoogle Scholar
  9. 9.
    N.A. Darwish, M.A. Abdelkarim, N. Hilal, I. Ashour, J. Chem. Eng. Data 48, 1614–1619 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Enayati, B. Mokhtarani, A. Sharifi, S. Anvari, M. Mirzaei, J. Chem. Eng. Data 62, 1068–1075 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Mokhtarani, J. Musavi, M. Parvini, A. Sharifi, M. Mirzaei, Fluid Phase Equilib. 409, 7–11 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Fariborz, A.A. Mohammad, B. Bahamin, Fluid Phase Equilib. 130, 184–198 (2018)Google Scholar
  13. 13.
    S.A. Sakal, Y. Lu, X. Jiang, C. Shen, C. Li, Chem. Eng. Data 59, 533–539 (2014)CrossRefGoogle Scholar
  14. 14.
    H.G. Gilani, A.G. Gilani, M. Janbaz, J. Chem. Thermodyn. 57, 152–159 (2013)CrossRefGoogle Scholar
  15. 15.
    E.J. Gonzalez, N. Calvar, E. Gomez, A. Domínguez, Fluid Phase Equilib. 303, 174–179 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Mohsen-Nia, H. Modarress, F. Doulabi, H. Bagheri, J. Chem. Thermodyn. 37(10), 1111–1118 (2005)CrossRefGoogle Scholar
  17. 17.
    F. Farghi, M. Kaddami, Russ. J. Phys. Chem. A 92(12), 2502–2506 (2018)CrossRefGoogle Scholar
  18. 18.
    T.A. Al-Sahhaf, E. Kapetanovic, Fluid Phase Equilib. 119(1–2), 153–163 (1996)CrossRefGoogle Scholar
  19. 19.
    M.B. Gramajo, A.M. Cases, J. Solut. Chem. 44, 171–180 (2015)CrossRefGoogle Scholar
  20. 20.
    B.E.-G. Flores, J.Á. Hernández, F.-G. Sánchez, M.A.-A. Olivos, Fluid Phase Equilib. 348, 60–69 (2013)CrossRefGoogle Scholar
  21. 21.
    B.E.G. Flores, G.G. Aguilar, R.E. Rincón, A. Trejo, Fluid Phase Equilib. 185, 275–293 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Mohsen-Nia, H. Modarress, F. Doulabi, J. Chem. Thermodyn. 38, 158–164 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Higashiuchi, Y. Sakuragi, Y. Arai, M. Nagatani, Fluid Phase Equilib. 58, 147–157 (1990)CrossRefGoogle Scholar
  24. 24.
    F. Farghi, M. Kaddami, J. Solut. Chem. 47(6), 1127–1137 (2018)CrossRefGoogle Scholar
  25. 25.
    D.F. Othmer, P.E. Tobias, Ind. Eng. Chem. 34, 693–696 (1942)CrossRefGoogle Scholar
  26. 26.
    D.B. Hand, J. Phys. Chem. 34, 1961–2000 (1930)CrossRefGoogle Scholar
  27. 27.
    H. Renon, J.M. Prausnitz, AIChE J. 14, 135–144 (1968)CrossRefGoogle Scholar
  28. 28.
    C. Goutaudier, F. Bonnet, R. Tenu, O. Baudouin, J.-J. Counioux, Chem. Eng. Res. Des. 92(12), 3008–3016 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratory: Physical-Chemistry of Processes and Materials, Faculty of Sciences and TechnologiesHassan 1st UniversitySettatMorocco

Personalised recommendations