First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges

  • 217 Accesses


Thermal transport properties have attracted extensive research attentions over the past decades. First-principles-based approaches have proved to be very useful for predicting the thermal transport properties of materials and revealing the phonon and electron scattering or propagation mechanisms in materials and devices. In this review, we provide a concise but inclusive discussion on state-of-the-art first-principles thermal modeling methods and notable achievements by these methods over the last decade. A wide range of materials are covered in this review, including two-dimensional materials, superhard materials, metamaterials, and polymers. We also cover the very recent important findings on heat transfer mechanisms informed from first principles, including phonon–electron scattering, higher-order phonon–phonon scattering, and the effect of external electric field on thermal transport. Finally, we discuss the challenges and limitations of state-of-the-art approaches and provide an outlook toward future developments in this area.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    F. Sarvar, D.C. Whalley, P.P. Conway, Thermal interface materials—a review of the state of the art, in 2006 1st Electronic Systemintegration Technology Conference, 2006, vol. 2, pp. 1292–1302

  2. 2.

    D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

  3. 3.

    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2002)

  4. 4.

    D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Pack. 138, 040802 (2016)

  5. 5.

    C. Dames, Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Ann. Rev. Heat. Transf. (2013).

  6. 6.

    D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223–241 (2001)

  7. 7.

    D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990)

  8. 8.

    P. Jiang, X. Qian, R. Yang, Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018)

  9. 9.

    Y. Wang, X. Ruan, A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 85, 205311 (2012)

  10. 10.

    Z. Lu, Y. Wang, X. Ruan, Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: theory, two-temperature molecular dynamics, and thermal circuit. Phys. Rev. B 93, 064302 (2016)

  11. 11.

    J. Zhou, B. Liao, G. Chen, First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors. Semicond. Sci. Technol. 31, 043001 (2016)

  12. 12.

    T. Luo, G. Chen, Nanoscale heat transfer—from computation to experiment. Phys. Chem. Chem. Phys. 15, 3389–3412 (2013).

  13. 13.

    T. Feng, X. Ruan, Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review. J. Nanomater. 2014, 25 (2014). (Art. no. 206370)

  14. 14.

    N. Mingo, D.A. Stewart, D.A. Broido, L. Lindsay, W. Li, Ab initio thermal transport, in Length-scale dependent phonon interactions, ed. by S.L. Shindé, G.P. Srivastava (Springer, New York, 2014), pp. 137–173

  15. 15.

    L. Lindsay, C. Hua, X.L. Ruan, S. Lee, Survey of ab initio phonon thermal transport. Mater. Today Phys. 7, 106–120 (2018)

  16. 16.

    Y. Wang, A.K. Vallabhaneni, B. Qiu, X. Ruan, Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys. Eng. 18, 155–182 (2014)

  17. 17.

    A.J.H. McGaughey, A. Jain, H.-Y. Kim, B. Fu, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019)

  18. 18.

    G.P. Srivastava, The physics of phonons (Routledge, Abingdon, 2019)

  19. 19.

    J.M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford University Press, Oxford, 2001)

  20. 20.

    L. Lindsay, D.A. Broido, N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009)

  21. 21.

    L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014)

  22. 22.

    M. Omini, A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys. B: Condens. Matter 212, 101–112 (1995)

  23. 23.

    G. Fugallo, M. Lazzeri, L. Paulatto, F. Mauri, Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430 (2013)

  24. 24.

    W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014)

  25. 25.

    J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G.K.H. Madsen, N. Mingo, almaBTE: a solver of the space-time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351–362 (2017). [in English]

  26. 26.

    A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015). [in English]

  27. 27.

    T. Tadano, Y. Gohda, S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter 26, 225402 (2014). [in English]

  28. 28.

    X.K. Gu, Z.Y. Fan, H. Bao, C.Y. Zhao, Revisiting phonon-phonon scattering in single-layer graphene. Phys. Rev. B 100, 064306 (2019). [in English]

  29. 29.

    L. Lindsay, D.A. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008)

  30. 30.

    A. Ward, D.A. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)

  31. 31.

    B. Fultz, Vibrational thermodynamics of materials. Prog. Mater Sci. 55, 247–352 (2010). [in English]

  32. 32.

    O. Hellman, I.A. Abrikosov, S.I. Simak, Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011)

  33. 33.

    O. Hellman, P. Steneteg, I.A. Abrikosov, S.I. Simak, Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013). [in English]

  34. 34.

    O. Hellman, I.A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88, 144301 (2013). [in English]

  35. 35.

    Y. Wang, Z. Lu, X. Ruan, First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering. J. Appl. Phys. 119, 225109 (2016)

  36. 36.

    S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T.S. Fisher, The atomistic Green’s function method for interfacial phonon transport. Ann. Rev. Heat Transf. 17, 89–145 (2014)

  37. 37.

    W. Zhang, T.S. Fisher, N. Mingo, The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transf. B Fundam. 51, 333–349 (2007)

  38. 38.

    C.A. Polanco, L. Lindsay, Ab initio phonon point defect scattering and thermal transport in graphene. Phys. Rev. B 97, 014303 (2018). [in English]

  39. 39.

    N.A. Katcho, J. Carrete, W. Li, N. Mingo, Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green’s function approach. Phys. Rev. B 90, 094117 (2014). [in English]

  40. 40.

    N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: an atomistic green’s function approach. Phys. Rev. B 68, 245406 (2003)

  41. 41.

    N. Mingo, Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006)

  42. 42.

    Z. Huang, T.S. Fisher, J.Y. Murthy, Simulation of thermal conductance across dimensionally mismatched graphene interfaces. J. Appl. Phys. 108, 114310 (2010)

  43. 43.

    S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: first-principles calculations and green’s function transport simulations. Phys. Rev. B 95, 085310 (2017)

  44. 44.

    Y. Wang, Z. Lu, A.K. Roy, X. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: an electron-phonon coupling perspective. J. Appl. Phys. 119, 065103 (2016)

  45. 45.

    R.S. Prasher, P.E. Phelan, A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transf. 123, 105–112 (2001)

  46. 46.

    L.D. Bellis, P.E. Phelan, R.S. Prasher, Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transf. 14, 144–150 (2000)

  47. 47.

    M. Kazan, Interpolation between the acoustic mismatch model and the diffuse mismatch model for the interface thermal conductance: application to InN/GaN superlattice. J. Heat Transf. 133, 112401 (2011)

  48. 48.

    R. Prasher, Acoustic mismatch model for thermal contact conductance of Van Der Waals contacts under static force. Nanoscale Microscale Thermophys. Eng. 22, 1–5 (2018)

  49. 49.

    R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009)

  50. 50.

    R. Bayrle, O. Weis, Acoustic mismatch model and thermal phonon radiation across a tin/sapphire interface with radiation temperatures between 1.6 and 3.7 K. J. Low Temp. Phys. 76, 129–141 (1989)

  51. 51.

    R.E. Peterson, A.C. Anderson, Acoustic-mismatch model of the Kaptiza resistance. Phys. Lett. A 40, 317–319 (1972)

  52. 52.

    W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959)

  53. 53.

    E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)

  54. 54.

    P.E. Hopkins, P.M. Norris, Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces. J. Heat Transf. 131, 022402 (2009)

  55. 55.

    J. Shi, J. Lee, Y. Dong, A. Roy, T.S. Fisher, X. Ruan, Dominant phonon polarization conversion across dimensionally mismatched interfaces: carbon-nanotube–graphene junction. Phys. Rev. B 97, 134309 (2018)

  56. 56.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

  57. 57.

    K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012)

  58. 58.

    E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

  59. 59.

    A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

  60. 60.

    W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan, L. Lv, H. Hou, Q. Wei, J. Yu, J. Wu, Y. Yao, S. Du, R. Sun, N. Jiang, Y. Wang, J. Kong, C. Wong, S. Maruyama, C.T. Lin, Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 13, 11561–11571 (2019)

  61. 61.

    J.N. Hu, Y. Wang, A. Vallabhaneni, X.L. Ruan, Y.P. Chen, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 99, 13101 (2011)

  62. 62.

    M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015).

  63. 63.

    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)

  64. 64.

    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

  65. 65.

    P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)

  66. 66.

    F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009)

  67. 67.

    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4, 611 (2010)

  68. 68.

    D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

  69. 69.

    I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vacuum Sci. Technol. B 25, 2558–2561 (2007)

  70. 70.

    J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010)

  71. 71.

    M. Ashton, J. Paul, S.B. Sinnott, R.G. Hennig, Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017)

  72. 72.

    H. Liu, G. Qin, Y. Lin, M. Hu, Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Lett. 16, 3831–3842 (2016)

  73. 73.

    A. Shafique, Y.-H. Shin, Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci. Rep. 7, 506 (2017)

  74. 74.

    D. Qin, P. Yan, G. Ding, X. Ge, H. Song, G. Gao, Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 8, 2764 (2018)

  75. 75.

    A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 28, 1647–1652 (2016)

  76. 76.

    S.S. Naghavi, J. He, Y. Xia, C. Wolverton, Pd2Se3 Monolayer: a promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater. 30, 5639–5647 (2018)

  77. 77.

    J.-H. Yang, Q. Yuan, H. Deng, S.-H. Wei, B.I. Yakobson, Earth-abundant and non-toxic SiX (X = S, Se) monolayers as highly efficient thermoelectric materials. J. Phys. Chem. C 121, 123–128 (2017)

  78. 78.

    S. Sharma, U. Schwingenschlögl, Thermoelectric response in single quintuple layer Bi2Te3. ACS Energy Lett. 1, 875–879 (2016)

  79. 79.

    L.-C. Zhang, G. Qin, W.-Z. Fang, H.-J. Cui, Q.-R. Zheng, Q.-B. Yan, G. Su, Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci. Rep. 6, 19830 (2016)

  80. 80.

    M.C. Barry, Z. Yan, M. Yoon, S.R. Kalidindi, S. Kumar, Phonon transport properties of two-dimensional electride Ca2N—a first-principles study. Appl. Phys. Lett. 113, 131902 (2018)

  81. 81.

    L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. 89, 155426 (2014)

  82. 82.

    L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. 90, 214302 (2014)

  83. 83.

    S. Sharma, S. Kumar, U. Schwingenschlögl, Arsenene and antimonene: two-dimensional materials with high thermoelectric figures of merit. Phys. Rev. Appl. 8, 044013 (2017)

  84. 84.

    W. Li, Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: an ab initio study of Si, Al, and MoS2. Phys. Rev. B 92, 075405 (2015)

  85. 85.

    H. Xie, T. Ouyang, É. Germaneau, G. Qin, M. Hu, H. Bao, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 93, 075404 (2016)

  86. 86.

    M. Zeraati, S.M. Vaez Allaei, I. Abdolhosseini Sarsari, M. Pourfath, D. Donadio, Highly anisotropic thermal conductivity of arsenene: an ab initio study. Phys. Rev. B 93, 085424 (2016)

  87. 87.

    X. Tan, H. Shao, T. Hu, G. Liu, J. Jiang, H. Jiang, High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. Phys. Chem. Chem. Phys. 17, 22872–22881 (2015)

  88. 88.

    L. Lindsay, D.A. Broido, N. Mingo, Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010)

  89. 89.

    J. Hu, X. Ruan, Y.P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9, 2730–2735 (2009)

  90. 90.

    Z. Aksamija, I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

  91. 91.

    Y. Wang, B. Qiu, X. Ruan, Edge effect on thermal transport in graphene nanoribbons: a phonon localization mechanism beyond edge roughness scattering. Appl. Phys. Lett. 101, 013101 (2012)

  92. 92.

    B. Qiu, Y. Wang, Q. Zhao, X. Ruan, The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes. Appl. Phys. Lett. 100, 233105 (2012)

  93. 93.

    T. Feng, X. Ruan, Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 97, 045202 (2018)

  94. 94.

    J. He, D. Li, Y. Ying, C. Feng, J. He, C. Zhong, H. Zhou, P. Zhou, G. Zhang, Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. NPJ Comput. Mater. 5, 47 (2019)

  95. 95.

    D.A. Broido, L. Lindsay, A. Ward, Thermal conductivity of diamond under extreme pressure: a first-principles study. Phys. Rev. B 86, 115203 (2012)

  96. 96.

    P. Chakraborty, G. Xiong, L. Cao, Y. Wang, Lattice thermal transport in superhard hexagonal diamond and wurtzite boron nitride: a comparative study with cubic diamond and cubic boron nitride. Carbon 139, 85–93 (2018)

  97. 97.

    T. Feng, X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016)

  98. 98.

    Y. Xia, Revisiting lattice thermal transport in PbTe: the crucial role of quartic anharmonicity. Appl. Phys. Lett. 113, 073901 (2018)

  99. 99.

    T. Feng, L. Lindsay, X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017)

  100. 100.

    L. Lindsay, D.A. Broido, T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013)

  101. 101.

    J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575 (2018)

  102. 102.

    S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, D.G. Cahill, B. Lv, High thermal conductivity in cubic boron arsenide crystals. Science 361, 579 (2018)

  103. 103.

    F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, M. Goni, Z. Ding, J. Sun, G.A.G. Udalamatta Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A.J. Schmidt, S. Chen, C.-W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, Z. Ren, Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582 (2018)

  104. 104.

    F. Tian, Z. Ren, High thermal conductivity in boron arsenide: from prediction to reality. Angewandte Chemie 131, 5882–5889 (2019)

  105. 105.

    A. Jain, A.J.H. McGaughey, Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B 93, 081206 (2016)

  106. 106.

    Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

  107. 107.

    B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015)

  108. 108.

    S.-Y. Yue, R. Yang, and B. Liao. Controlling thermal conductivity of two-dimensional materials via externally induced phonon-electron interaction. arXiv preprint arXiv:1904.11011 (2019)

  109. 109.

    Z. Tong, H. Bao, Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations. Int. J. Heat Mass Transf. 117, 972–977 (2018)

  110. 110.

    N.A. Lanzillo, J.B. Thomas, B. Watson, M. Washington, S.K. Nayak, Pressure-enabled phonon engineering in metals. Proc. Natl. Acad. Sci. 111, 8712 (2014)

  111. 111.

    S. Li, Z. Tong, H. Bao, Resolving different scattering effects on the thermal and electrical transport in doped SnSe. J. Appl. Phys. 126, 025111 (2019)

  112. 112.

    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

  113. 113.

    A. Majumdar, P. Reddy, “Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces,” (in English). Appl. Phys. Lett. 84, 4768–4770 (2004)

  114. 114.

    Y. Wang, X.L. Ruan, A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Physical Review B 85, 205311 (2012)

  115. 115.

    X. Li, W. Park, Y. Wang, Y.P. Chen, X. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer. J. Appl. Phys. 125, 045302 (2019)

  116. 116.

    Y. Wang, X. L. Ruan. An evaluation of energy transfer pathways in thermal transport across solid/solid interfaces, in, Proceedings of the Asme summer heat transfer conference—2013, Vol 1, (2014) [in English]

  117. 117.

    A.H. Zahiri, P. Chakraborty, Y. Wang, L. Cao, Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: the role of fivefold twins. J. Appl. Phys. 126, 075103 (2019)

  118. 118.

    L. Cao, A. Sengupta, D. Pantuso, M. Koslowski, Effect of texture and grain size on the residual stress of nanocrystalline thin films. Model. Simul. Mat. Sci. Eng. 25, 075004 (2017). [in English]

  119. 119.

    L. Cao, A. Hunter, I.J. Beyerlein, M. Koslowski, The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals. J. Mech. Phys. Solids 78, 415–426 (2015). [in English]

  120. 120.

    B. Baufeld, O. Van der Biest, R. Gault, Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31, S106–S111 (2010). [in English]

  121. 121.

    J.L. Yang, Selective laser melting additive manufacturing of advanced nuclear materials V-6Cr-6Ti. Mater. Lett. 209, 268–271 (2017). [in English]

  122. 122.

    Y.N. Cui, P. Lin, Z.L. Liu, Z. Zhuang, Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int. J. Plast 55, 279–292 (2014). [in English]

  123. 123.

    Y.A. Cui, G. Po, N. Ghoniem, Controlling strain bursts and avalanches at the nano- to micrometer scale. Phys. Rev. Lett. 117, 155502 (2016). [in English]

  124. 124.

    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002). [in English]

  125. 125.

    J. Zhang, L. Song, B.B. Iversen, Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. NPJ Comput. Mater. 5, 76 (2019)

  126. 126.

    P. Chakraborty, T.F. Ma, A.H. Zahiri, L. Cao, Y. Wang, Carbon-based materials for thermoelectrics. Adv. Condens. Matter Phys. (2018). [in English]

  127. 127.

    S. Hao, V.P. Dravid, M.G. Kanatzidis, C. Wolverton, Computational strategies for design and discovery of nanostructured thermoelectrics. NPJ Comput. Mater. 5, 58 (2019)

  128. 128.

    G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” in Materials for sustainable energy: Co-Published with Macmillan Publishers Ltd, UK, 2010, pp. 101–110

  129. 129.

    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)

  130. 130.

    P. Chakraborty, T. Ma, A.H. Zahiri, L. Cao, Y. Wang, Carbon-based materials for thermoelectrics. Adv. Condens. Matter Phys. 2018, 29 (2018). [Art. no. 3898479]

  131. 131.

    D.A. Broido, M. Malorny, G. Birner, N. Mingo, D.A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007)

  132. 132.

    A. Ward, D.A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)

  133. 133.

    L. Lindsay, D.A. Broido, T.L. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)

  134. 134.

    O. Hellman, D.A. Broido, Phonon thermal transport in Bi 2 Te 3 from first principles. Phys. Rev. B 90, 134309 (2014)

  135. 135.

    A. Kundu, N. Mingo, D.A. Broido, D.A. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)

  136. 136.

    S. Lee, K. Esfarjani, J. Mendoza, M.S. Dresselhaus, G. Chen, Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles. Phys. Rev. B 89, 085206 (2014)

  137. 137.

    Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phonon conduction in PbSe, PbTe, and PbTe 1–x Se x from first-principles calculations. Phys. Rev. B 85, 184303 (2012)

  138. 138.

    S. Lee, K. Esfarjani, T.F. Luo, J.W. Zhou, Z.T. Tian, G. Chen, Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014). [in English]

  139. 139.

    B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J.M. Mendoza, O.D. Restrepo, X. Ruan, G. Chen, First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon. EPL 109, 57006 (2015)

  140. 140.

    Q. Song, T.-H. Liu, J. Zhou, Z. Ding, G. Chen, Ab initio study of electron mean free paths and thermoelectric properties of lead telluride. Mater. Today Phys. 2, 69–77 (2017)

  141. 141.

    R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899 (1994)

  142. 142.

    G. Qin, Z. Qin, S.-Y. Yue, Q.-B. Yan, M. Hu, External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale 9, 7227–7234 (2017).

  143. 143.

    C. Liu, V. Mishra, Y. Chen, C. Dames, Large thermal conductivity switch ratio in barium titanate under electric field through first-principles calculation. Adv. Theory Simul. 1, 1800098 (2018)

  144. 144.

    C. Liu, Y. Chen, C. Dames, Electric-field-controlled thermal switch in ferroelectric materials using first-principles calculations and domain-wall engineering. Phys. Rev. Appl. 11, 044002 (2019)

  145. 145.

    S. Shen, A. Henry, J. Tong, R.T. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010). [in English]

  146. 146.

    X. Wang, M. Kaviany, B. Huang, Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017).

  147. 147.

    N. Shulumba, O. Hellman, A.J. Minnich, Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017)

  148. 148.

    Y. Zhang, F. H. Shao, C. A. Yang, S. W. Xie, S. S. Huang, Y. Yuan, J. M. Shang, Y. Zhang, Y. Q. Xu, H. Q. Ni, and Z. C. Niu, Optimum growth parameters of InAs/AlSb superlattices for interband cascade lasers, in 14th National conference on laser technology and optoelectronics (Lto 2019), vol. 11170, (2019) [in English]

  149. 149.

    A. Rajeev, B. Shi, Q. Li, J.D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K.M. Lau, T.F. Kuech, L.J. Mawst, III–V Superlattices on InP/Si metamorphic buffer layers for lambda approximate to 4.8 mu m quantum cascade lasers. Phys. Status Solidi Appl. Mater. Sci. 216, 1800493 (2019). [in English]

  150. 150.

    J.D. Kirch, H. Kim, C. Boyle, C.C. Chang, L.J. Mawst, D. Lindberg, T. Earles, D. Botez, M. Helm, J. von Borany, S. Akhmadaliev, R. Bottger, C. Reyner, Proton implantation for electrical insulation of the InGaAs/InAlAs superlattice material used in 8–15 mu m-emitting quantum cascade lasers. Appl. Phys. Lett. 110, 082102 (2017)

  151. 151.

    L. Shi, J. Jiang, G. Zhang, B. Li, High thermoelectric figure of merit in silicon-germanium superlattice structured nanowires. Appl. Phys. Lett. 101, 233114 (2012)

  152. 152.

    G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen, B. Yang, Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016)

  153. 153.

    H. Böttner, G. Chen, R. Venkatasubramanian, Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211–217 (2006)

  154. 154.

    G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations. Phys. Rev. B 76, 075201 (2007)

  155. 155.

    P. Chakraborty, L. Cao, Y. Wang, Ultralow lattice thermal conductivity of the random multilayer structure with lattice imperfections. Sci Rep 7, 8134 (2017)

  156. 156.

    Y. Wang, C.J. Gu, X.L. Ruan, Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity. Appl. Phys. Lett. 106, 73104 (2015). [in English]

  157. 157.

    Y. Wang, H. Huang, X. Ruan, Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers. Phys. Rev. B 90, 165406 (2014)

  158. 158.

    J. Garg, N. Bonini, N. Marzari, High thermal conductivity in short-period superlattices. Nano Lett. 11, 5135–5141 (2011)

  159. 159.

    Y. Chen, D. Li, J.R. Lukes, Z. Ni, M. Chen, Minimum superlattice thermal conductivity from molecular dynamics. Phys. Rev. B 72, 174302 (2005)

  160. 160.

    P. Hyldgaard, G.D. Mahan, Phonon superlattice transport. Phys. Rev. B 56, 10754–10757 (1997)

  161. 161.

    S.-I. Tamura, Y. Tanaka, H.J. Maris, Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B 60, 2627–2630 (1999)

  162. 162.

    J. Garg, G. Chen, Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 140302 (2013)

  163. 163.

    R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000). [in English]

  164. 164.

    B.C. Daly, H.J. Maris, K. Imamura, S. Tamura, Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B 66, 024301 (2002). [in English]

  165. 165.

    J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. Ramesh, M.A. Zurbuchen, Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168 (2013)

  166. 166.

    J. Carrete, B. Vermeersch, L. Thumfart, R.R. Kakodkar, G. Trevisi, P. Frigeri, L. Seravalli, J.P. Feser, A. Rastelli, N. Mingo, Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity. J. Phys. Chem. C 122, 4054–4062 (2018). [in English]

  167. 167.

    Z. Tian, K. Esfarjani, G. Chen, Green’s function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014)

  168. 168.

    Z. Tian, K. Esfarjani, G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: first-principles study with the Green’s function method. Phys. Rev. B 86, 235304 (2012)

  169. 169.

    B. Qiu, G. Chen, Z. Tian, Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. 19, 272–278 (2015)

  170. 170.

    J. Mendoza, G. Chen, Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Lett. 16, 7616–7620 (2016)

  171. 171.

    M. Campbell, A.J. Hoane, F.-H. Hsu, Deep blue. Artif Intell 134, 57–83 (2002)

  172. 172.

    D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016)

  173. 173.

    J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014)

  174. 174.

    A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, I. Tanaka, Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Phys. Rev. Lett. 115, 205901 (2015)

  175. 175.

    H. Yang, Z. Zhang, J. Zhang, X.C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale 10, 19092–19099 (2018).

  176. 176.

    Y.-J. Wu, L. Fang, Y. Xu, Predicting interfacial thermal resistance by machine learning. NPJ Comput. Mater. 5, 56 (2019)

  177. 177.

    P. Chakraborty, Y. Liu, T. Ma, X. Guo, L. Cao, R. Hu, Y. Wang, Quenching thermal transport in aperiodic superlattices: a molecular dynamics and machine learning study. ACS Appl. Mater. Interfaces (2020, under review)

  178. 178.

    A. Jain, A.J.H. McGaughey, Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Comput. Mater. Sci. 110, 115–120 (2015). [in English]

  179. 179.

    G. Qin, M. Hu, Accelerating evaluation of converged lattice thermal conductivity. NPJ Comput. Mater. 4, 3 (2018)

  180. 180.

    H. Xie, X. Gu, H. Bao, Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity. Comput. Mater. Sci. 138, 368–376 (2017)

  181. 181.

    N. Bonini, J. Garg, N. Marzari, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012). [in English]

  182. 182.

    Y. Wang, A. Vallabhaneni, J.N. Hu, B. Qiu, Y.P. Chen, X.L. Ruan, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett. 14, 592–596 (2014)

  183. 183.

    Y. Wang, B. Qiu, X.L. Ruan, Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering. Phys. Rev. Lett. 101, 013101 (2012)

  184. 184.

    Y. Wang, S.Y. Chen, X.L. Ruan, Tunable thermal rectification in graphene nanoribbons through defect engineering: a molecular dynamics study. Appl. Phys. Lett. 100, 163101 (2012)

  185. 185.

    N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. Phys. Rev. Lett. 103, 125902 (2009)

  186. 186.

    M. Puligheddu, F. Gygi, G. Galli, First-principles simulations of heat transport. Phys. Rev. Mater. 1, 060802 (2017)

  187. 187.

    A. Bouzid, H. Zaoui, P. Luca Palla, G. Ori, M. Boero, C. Massobrio, F. Cleri, E. Lampin, Thermal conductivity of glassy GeTe4 by first-principles molecular dynamics. Phys. Chem. Chem. Phys. 19, 9729–9732 (2017).

  188. 188.

    J.S. Tse, N.J. English, K. Yin, T. Iitaka, Thermal conductivity of solids from first-principles molecular dynamics calculations. J. Phys. Chem. C 122, 10682–10690 (2018)

  189. 189.

    H. Man, Z. Shi, G. Xu, Y. Xu, X. Chen, S. Sullivan, J. Zhou, K. Xia, J. Shi, P. Dai, Direct observation of magnon-phonon coupling in yttrium iron garnet. Phys. Rev. B 96, 100406 (2017)

  190. 190.

    J. Holanda, D.S. Maior, A. Azevedo, S.M. Rezende, Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018)

  191. 191.

    C. Berk, M. Jaris, W. Yang, S. Dhuey, S. Cabrini, H. Schmidt, Strongly coupled magnon–phonon dynamics in a single nanomagnet. Nat. Commun. 10, 2652 (2019)

  192. 192.

    X. Wu, Z. Liu, T. Luo, Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations. J. Appl. Phys. 123, 085109 (2018)

Download references


The authors would like to thank LC’s and YW’s faculty startup funds from the University of Nevada, Reno. Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund (60587-DNI10) for partial support of this research.

Author information

Correspondence to Yan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Chakraborty, P., Guo, X. et al. First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges. Int J Thermophys 41, 9 (2020).

Download citation


  • Density functional theory
  • Electron
  • First principles
  • Phonon
  • Thermal transport