Advertisement

Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature

  • 26 Accesses

Abstract

We show that a variety of the critical parameters of substances can be systematized by relating them to the corresponding Boyle values and heat of vaporization under normal conditions. We have found new relationship for the critical parameters of substances obtained by processing the NIST database and other various sources. According to new relationship, the sum of the ratios of the critical and Boyle temperatures and the critical temperature to the heat of vaporization practically remains constant. The previous one (Apfelbaum and Vorob’ev in J Phys Chem B 113:3521, 2009) states that the sum of the critical temperature and density reduced to the corresponding Boyle values is also constant. Check for 70 substances from the NIST database and calculations for Mie m-6 potential confirmed these regularities within few percent accuracy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley-Interscience, New York, 1977)

  2. 2.

    G.A. Martynov, Fundamental Theory of Liquids (Adam Hilger, New York, 1992)

  3. 3.

    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 113, 3521 (2009)

  4. 4.

    E.M. Apfelbaum, V.S. Vorob’ev, J. Chem. Phys. 130, 214111 (2009)

  5. 5.

    D. Ben-Amotz, D.R. Herschbach, Isr. J. Chem. 30, 59 (1990)

  6. 6.

    M.C. Kutney, M.T. Reagan, K.A. Smith, J.W. Tester, D.R. Herschbach, J. Phys. Chem. B 104, 9513 (2000)

  7. 7.

    M.E. Dritz, Svoistva Elementov. Spravochnik (The Properties of Elements. Reference Book) (Metallurgy, Moscow, 1988). [in Russian]

  8. 8.

    Y. Zhang, J.R.G. Evans, S. Yang, J. Chem. Eng. Data 56, 328 (2011)

  9. 9.

    E. W. Lemmon, M. O. McLinden, D. G. Friend, NIST standard reference database #69. In NIST chemistry WebBook, by P. J. Linstrom, W. G. Mallard, Eds. http://webbook.nist.gov, 2004; see also http://webbook.nist.gov/chemistry/fluid/

  10. 10.

    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 119, 11825 (2015)

  11. 11.

    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 120, 4828 (2016)

  12. 12.

    E.M. Apfelbaum, V.S. Vorob’ev, J. Mol. Liq. 235, 149 (2017)

  13. 13.

    E.M. Apfelbaum, J. Mol. Liq. 263, 237 (2018)

  14. 14.

    V.A. Rabinovich, A.A. Vasserman, V.I. Nedostup, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (Hemispere, Berlin, 1988)

  15. 15.

    S. Jungst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55, 2160 (1985)

  16. 16.

    V.F. Kozhevnokov, Sov. Phys. JETP 70, 298 (1990)

  17. 17.

    W. Goltzlaff, G. Schonherr, F. Henzel, Z. Phys. Chem. 156, 219 (1988)

  18. 18.

    I.K. Kikoin, P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967). [in Russian]

  19. 19.

    P.I. Bystrov, D.N. Kagan, G.A. Krechetova, E.E. Shpilrain, Liquid Metal Coolants for Heat Pipes and Power Plants (Hemisphere, New York, 1990)

  20. 20.

    F. Hensel, G.F. Hohl, D. Schaumloffel, W.S. Pilgrim, Z. Phys. Chem. 214, 823 (2000)

  21. 21.

    M. Leitner, W. Schroer, G. Pottlacher, Int. J. Thermophys. 39, 124 (2018)

  22. 22.

    R. Fisher, R.W. Schmutzler, F. Hensel, J. Non-Crystal. Solids 35–36, 1295 (1980)

  23. 23.

    S. Hosokawa, T. Kuboi, K. Tamura, Ber. Bunsenges. Phys. Chem. 101, 120 (1997)

  24. 24.

    D.V. Minakov, M.A. Paramonov, P.R. Levashov, Phys. Rev. B 97, 024205 (2018)

  25. 25.

    E.M. Apfelbaum, J. Phys. Chem. B 116, 14660 (2012)

  26. 26.

    W.A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin Inc., New York, 1966)

  27. 27.

    J.M. Merritt, V.E. Bondybey, M.C. Heaven, Science 324, 1548 (2009)

  28. 28.

    C. Desgranges, J. Delhommelle, J. Phys. Chem. B 120, 5255 (2016)

  29. 29.

    C. Desgranges, P.W. Anderson, J. Delhommelle, J. Phys.: Condens. Matter. 29, 045401 (2017)

  30. 30.

    J. Nichele, L.D. Alves, I. Borges Jr., High Temp. High Press. 43, 385 (2014)

  31. 31.

    J. Nichele, I. Borges, A.B. Oliveira, L.S. Alves, J. Supercrit. Fluids 114, 46 (2016)

  32. 32.

    J. Nichele, A.B. Oliveira, L.S. Alves, I. Borges, J. Mol. Liq. 237, 65 (2017)

  33. 33.

    C. Desgranges, A. Margo, J. Delhommelle, Chem. Phys. Lett. 658, 37 (2016)

  34. 34.

    J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)

  35. 35.

    R.A. Messerly, M.C. Anderson, S.M. Razavi, J.R. Elliott, Fluid Phase Equil. 483, 101 (2019)

  36. 36.

    J.J. Potoff, G. Kamath, J. Chem. Eng. Data 59, 3144 (2014)

  37. 37.

    F. Del Rio, I.A. Mclure, J. Chavez, J.E. Ramos, E. Avalos, Mol. Phys. 104, 3757 (2006)

  38. 38.

    P. Orea, Y. Reyes-Mercado, Y. Duda, Phys. Lett. A 372, 7024 (2008)

  39. 39.

    C. Avendaño, T. Lafitte, C.S. Adjiman, A. Galindo, E.A. Müller, G. Jackson, J. Phys. Chem. B 117, 2717 (2013)

  40. 40.

    C. Waibel, J. Gross, J. Chem. Theory Comput. 15, 2561 (2019)

  41. 41.

    H. Okumura, F. Yonezava, J. Chem. Phys. 113, 9162 (2000)

  42. 42.

    J.M.G. Sousa, A.L. Ferreira, M.A. Barroso, J. Chem. Phys. 136, 174502 (2012)

Download references

Author information

Correspondence to E. M. Apfelbaum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apfelbaum, E.M., Vorob’ev, V.S. Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature. Int J Thermophys 41, 8 (2020) doi:10.1007/s10765-019-2581-6

Download citation

Keywords

  • Boyle and critical parameters
  • Heat of vaporization
  • Similarity laws
  • Zeno line