Modeling the Total Ternary Phase Diagram of NaNO3–KNO3–NaNO2 Using the Binary Subsystems Data

  • T. DeliseEmail author
  • A. C. Tizzoni
  • E. V. Votyakov
  • L. Turchetti
  • N. Corsaro
  • S. Sau
  • S. Licoccia


When designing a concentrating solar power (CSP) system, selection of a proper heat transfer fluid (HTF) material is a key, especially when employed in parabolic trough CSP plants. In particular, the use of low melting mixtures as an alternative to the widely commonly used “solar salt” can increase the CSP manageably and, as a result, several innovative nitrite/nitrate mixtures have been proposed. However, very few thermodynamics data are available for these compounds, especially regarding ternary compositions. One of the most interesting low freezing mixture is prepared with sodium and potassium nitrate together with sodium nitrite. The aim of this work is to investigate the thermodynamics properties of this ternary system, starting from its binary subunits, studying the phase diagram of this compound both experimentally and by a regular solution model. At this purpose, the literature phase diagrams of the binary subsystem were simulated in order to obtain the fitting parameters necessary for the employed semi-predictive tool. Then, the ternary system was modeled and the results showed very good agreement with the experimental points. It is quite interesting to note that both the theoretical and experimental results showed a low melting zone presenting greater sodium nitrate molar fractions with respect to sodium nitrite than previously reported in literature. This would lead to a decrease in the HTF price and an improvement regarding the fluid toxicity.


HTF Molten salt Nitrate Regular solution Ternary phase diagram 



Part of the research presented in this paper was carried out during the secondment of Evgeni Votyakov at ENEA laboratories. Such secondment was funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 692259 (NESTER project).


  1. 1.
    T. Delise, A.C. Tizzoni, M. Ferrara, N. Corsaro, C. D’Ottavi, S. Sau, S. Licoccia, Thermophysical, environmental, and compatibility properties of nitrate and nitrite containing molten salts for medium temperature CSP applications: a critical review. J. Eur. Ceram. Soc. 39(1), 92–99 (2019)CrossRefGoogle Scholar
  2. 2.
    A. Bonk, S. Sau, N. Uranga, M. Hernaiz, T. Bauer, Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog. Energy Combust. Sci. 67, 69–87 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Sau, N. Corsaro, T. Crescenzi, C. D’Ottavi, C. D’Ottavi, R. Liberatore, S. Licoccia, V. Russo, P. Tarquini, A.C. Tizzoni, C. D’Ottavi, Techno-economic comparison between CSP plants presenting two different heat transfer fluids. Appl. Energy 168, 96–109 (2016)CrossRefGoogle Scholar
  4. 4.
    I. Ortega-Fernández, Y. Grosu, A. Ocio, P.L. Arias, J. Rodríguez-Aseguinolaza, A. Faik, New insights into the corrosion mechanism between molten nitrate salts and ceramic materials for packed bed thermocline systems: a case study for steel slag and Solar salt. Sol. Energy 173, 152–159 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    X. Li, L. Xie, Experimental investigation and thermodynamic modeling of the LiNO3–RbNO3–AgNO3 system and its subsystems. J. Alloys Compd. 736, 124–135 (2018)CrossRefGoogle Scholar
  6. 6.
    D. Fernández-González, I. Ruiz-Bustinza, C. González-Gasca, J. Piñuela Noval, J. Mochón-Castaños, J. Sancho-Gorostiaga, L.F. Verdeja, Concentrated solar energy applications in materials science and metallurgy. Sol. Energy 170, 520–540 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    V.M.B. Nunes, C.S. Queirós, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, Molten salts as engineering fluids—a review: part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016)CrossRefGoogle Scholar
  8. 8.
    C.S. Turchi, J. Vidal, M. Bauer, Molten salt power towers operating at 600–650 °C: salt selection and cost benefits. Sol. Energy 164, 38–46 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Y.Y. Chen, C.Y. Zhao, Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage. Sol. Energy 146(3), 172–179 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    C. Zhu, X. Cheng, Y. Li, B. Tao, Influence of heat treatment on solidus temperature of NaNO3–KNO3 molten salt. Sol. Energy 118, 303–312 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    P. Zhang, J. Cheng, Y. Jin, X. An, Evaluation of thermal physical properties of molten nitrate salts with low melting temperature. Sol. Energy Mater. Sol. Cells 176, 36–41 (2018)CrossRefGoogle Scholar
  12. 12.
    J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3rd edn. (Prentice Hall PTR, New York, 1998)Google Scholar
  13. 13.
    G.M. Wilson, Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86(2), 127–130 (1964)CrossRefGoogle Scholar
  14. 14.
    H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14(1), 135–144 (1968)CrossRefGoogle Scholar
  15. 15.
    D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21(1), 116–128 (1975)CrossRefGoogle Scholar
  16. 16.
    A. Vetere, Prediction of vapor-liquid equilibria of non-aqueous systems in the subcritical range by using the NRTL equation. Fluid Phase Equilib. 91(2), 265–280 (1993)CrossRefGoogle Scholar
  17. 17.
    A. Vetere, Prediction of vapor-liquid equilibria of aqueous systems in the subcritical range by using the NRTL equation. Fluid Phase Equil. 99, 63–74 (1994)CrossRefGoogle Scholar
  18. 18.
    J.H. Hildebrand, R.L. Scott, Regular solutions (Prentice-Hall, New York, 1962)Google Scholar
  19. 19.
    S.M. Davison, A.C. Sun, Thermodynamic analysis of solid-liquid phase equilibria of nitrate salts. Ind. Eng. Chem. Res. 50(22), 12617–12625 (2011)CrossRefGoogle Scholar
  20. 20.
    I.J. Zsigrai, K. Szecsenyi-Meszaros, I. Paligorić, I.J. Gal, Calculation of phase diagrams of ternary reciprocal molten salt mixtures. The system Li + -K + -F–Cl-. Croat. Chem. Acta 58(1), 35–42 (1985)Google Scholar
  21. 21.
    A.D. Pelton, P. Chartrand, Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model. Metall. Mater. Trans. A 32(6), 1361–1383 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Mantha, T. Wang, R.G. Reddy, Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3-NaNO2 quaternary system. Sol. Energy Mater. Sol. Cells 118, 18–21 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Jriri, J. Rogez, C. Bergman, J. Mathieu, Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions (Thermochim, Acta, 1995)CrossRefGoogle Scholar
  24. 24.
    A.N. Xuehui, Z. Peng, C. Jinhui, C. Shuanglin, W. Jianqiang, Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems. Chem. Res. Chin. Univ. 33(21406256), 122–128 (2017)Google Scholar
  25. 25.
    C. Kramer, C. Wilson, The phase diagram of NaNO3—KNO3. Thermochim. Acta 42(3), 253–264 (1980)CrossRefGoogle Scholar
  26. 26.
    K. Coscia, T. Elliott, S. Mohapatra, A. Oztekin, S. Neti, Binary and ternary nitrate solar heat transfer fluids. J. Sol. Energy Eng. 135(2), 021011 (2013)CrossRefGoogle Scholar
  27. 27.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45(9–10), 1597–1615 (2004)CrossRefGoogle Scholar
  28. 28.
    A. Abdessattar, D. Boa, D. Hellali, H. Zamali, Experimental study and thermodynamic analysis of (CsNO3 + TlNO3) binary system. J. Alloys Compd. 739, 827–836 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Abdessattar, D. Hellali, D. Boa, H. Zamali, Experimental investigation and calculation of the phase diagram of the binary system (NaNO3 + TlNO3). J. Alloys Compd. 651, 773–778 (2015)CrossRefGoogle Scholar
  30. 30.
    J. De Jong, G.H. Broers, Phase diagram of the KNO3 + KO2 system. J. Chem. Thermodyn. 8(4), 367–372 (1976)CrossRefGoogle Scholar
  31. 31.
    O.J. Kleppa, Heats of mixing in liquid sodium-potassium nitrates a new twin high-temperature reaction calorimeter. The heats of mixing in liquid sodium-potassium nitrates. J. Phys. Chem. 64(12), 1937–1940 (1960)CrossRefGoogle Scholar
  32. 32.
    C. Vallet, Phase diagrams and thermodynamic properties of some molten nitrate mixtures. J. Chem. Thermodyn. 4(1), 105–114 (1972)CrossRefGoogle Scholar
  33. 33.
    C. Robelin, P. Chartrand, A.D. Pelton, Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO4 + K2SO4) system. J. Chem. Thermodyn. 83, 12–26 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Renaud, C. Robelin, A.E. Gheribi, P. Chartrand, Thermodynamic evaluation and optimization of the Li, Na, K, Mg, Ca, Sr//F, Cl reciprocal system. J. Chem. Thermodyn. 43(8), 1286–1298 (2011)CrossRefGoogle Scholar
  35. 35.
    E. Renaud, C. Robelin, M. Heyrman, P. Chartrand, Thermodynamic evaluation and optimization of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system. J. Chem. Thermodyn. 41(5), 666–682 (2009)CrossRefGoogle Scholar
  36. 36.
    D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system. J. Chem. Thermodyn. 39(7), 1001–1021 (2007)CrossRefGoogle Scholar
  37. 37.
    D. Lindberg, R. Backman, P. Chartrand, Thermodynamic evaluation and optimization of the (Na2SO4 + K2SO4 + Na2S2O7 + K2S2O7) system. J. Chem. Thermodyn. 38(12), 1568–1583 (2006)CrossRefGoogle Scholar
  38. 38.
    D. Lindberg, R. Backman, M. Hupa, P. Chartrand, Thermodynamic evaluation and optimization of the (Na + K + S) system. J. Chem. Thermodyn. 38(7), 900–915 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Boerema, G. Morrison, R. Taylor, G. Rosengarten, Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol. Energy 86(9), 2293–2305 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    J.M. Andújar, F. Rosa, M. Geyer, CESA-1 thermal storage system evaluation. Sol. Energy 46(5), 305–312 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Jin, J. Cheng, X. An, T. Su, P. Zhang, Z. Li, Accurate viscosity measurement of nitrates/nitrites salts for concentrated solar power. Sol. Energy 137, 385–392 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    R.I. Olivares, The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres. Sol. Energy 86(9), 2576–2583 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    M. Halmann, K. Zuckerman, Stability of molten nitrate salts containing light absorbing additives as solar flux absorbers. Sol. Energy Mater. 17(4), 311–318 (1988)CrossRefGoogle Scholar
  44. 44.
    S. Sau, E. Veca, N. Corsaro, A. Tizzoni, C. Tizzoni, Nitrati fusi come fluido termovettore intermedio. Confronto fra miscela binaria ed una ternaria contenente calcio-Accordo di Programma Ministero dello Sviluppo Economico-ENEA-Piano Annuale di Realizzazione 2012 (2013)Google Scholar
  45. 45.
    T. Delise, A.C. Tizzoni, M. Ferrara, N. Corsaro, C. D’ottavi, A. Giaconia, L. Turchetti, M.C. Annesini, M. Telling, S. Sau, S. Licoccia, New solid phase of KNO3–NaNO3 salt mixtures studied by neutron scattering and differential scanning calorimetry analysis. AIP Conf. Proc. 2126(1), 80001 (2018)CrossRefGoogle Scholar
  46. 46.
    S. Sandler, Chemical, biochemical, and engineering thermodynamics (Wiley, New York, 2017)Google Scholar
  47. 47.
    A.C. Tizzoni, S. Sau, N. Corsaro, A. Giaconia, C. D’Ottavi, S. Licoccia, Thermal fluids for CSP systems: alkaline nitrates/nitrites thermodynamics modelling method. AIP Conf. Proc. 1734(1), 040007 (2016)CrossRefGoogle Scholar
  48. 48.
    K.S. Merzlyakov, N.P. Uglev, Phase diagram of the NaNO2–KNO3 system in the 0 to 1 molar fraction range of concentrations of KNO 3. Russ. J. Phys. Chem. A 90(4), 637–638 (2016)CrossRefGoogle Scholar
  49. 49.
    R.W. Berg, D.H. Kerridge, The NaNO(3)/KNO(3) system: the position of the solidus and sub-solidus. Dalton Trans. 1(15), 2224–2229 (2004)CrossRefGoogle Scholar
  50. 50.
    R.W. Berg, D.H. Kerridge, P.H. Larsen, NaNO2 + NaNO3 phase diagram: new data from DSC and raman spectroscopy. J. Chem. Eng. Data 51(1), 34–39 (2006)CrossRefGoogle Scholar
  51. 51.
    T. Kawakami, M. Suzuki, K. Yokoyama, S. Takenaka, Heat capacity measurement of molten NaNO3–NaNO2–KNO3 by drop calorimetry. In: VII international conference on molten slags fluxes and salts (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRomeItaly
  2. 2.ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRomeItaly
  3. 3.Energy, Environment and Water Research Center (EEWRC), The Cyprus InstituteAglantziaCyprus

Personalised recommendations