Advertisement

The Thermodynamic Properties of CO2 up to 200 MPa Including the Critical Region, Calculated by a New Combined Equation of State with Few Parameters

  • P. P. BezverkhiiEmail author
  • V. G. Martynets
  • A. B. Kaplun
  • A. B. Meshalkin
Article
  • 17 Downloads

Abstract

Heat capacities Cv, Cp, and sound velocity W of carbon dioxide are calculated on the basis of a new thermal combined equation of state (EoS) with a low number of regulated constants. This equation includes a new regular EoS with 11 coefficients, a scaling EoS with six coefficients, and a regular transition function containing two adjustable parameters. Calculating results for thermodynamic properties of CO2 in the regular behavior range of up to 200 MPa correspond to the accuracy level of modern practical equations of state with large numbers of determined constants. This makes it possible to calculate the properties of CO2 in the critical region, taking into account the achievements of scaling theory. To determine the constants of the calculated equations, only p,ρ,T-data for CO2 were used. The experimental and tabular data on Cv, Cp, S, H, and W were not involved except isochoric heat capacity Cv in the ideal gas state. These data were used to compare the calculated results with the experimental and tabulated values. The universal critical exponents were taken in accordance with the three-dimensional Ising model. The average errors in describing the thermal properties of CO2 do not exceed errors: rms error is 0.93 % in pressure and max deviation in Cv is 10 %. Divergences in the critical region relate to application of the scaling equation of state, in contrast to the regular equations. The comparison was made with calculated Cv, Cp using the current crossover EoSs for CO2.

Keywords

Calculation of heat capacities Carbon dioxide Critical point Equation of state Scaling 

Notes

Acknowledgments

We thank Russian Federal Ministry for Science and High Education for funding.

References

  1. 1.
    I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova, J. Chem. Thermodyn. 125, 107 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Nazeri, A. Chapoy, R. Burgass, B. Tohidi, J. Chem. Thermodyn. 111, 157 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    L. Sun, S.B. Kiselev, J.F. Ely, Fluid Phase Equilibr. 233, 204 (2005)CrossRefGoogle Scholar
  5. 5.
    S.B. Kiselev, J.F. Ely, Fluid Phase Equilibr. 222–223, 149 (2004)CrossRefGoogle Scholar
  6. 6.
    S.B. Kiselev, J.F. Ely, Fluid Phase Equilibr. 252, 57 (2007)CrossRefGoogle Scholar
  7. 7.
    P.P. Bezverkhii, V.G. Martynets, E.V. Matizen, Russ. J. Phys. Chem. A 81, 847 (2007)CrossRefGoogle Scholar
  8. 8.
    P.P. Bezverkhii, V.G. Martynets, E.V. Matizen, J. Exp. Theor. Phys. 109, 262 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P.P. Bezverkhy, V.G. Martynets, E.V. Matizen, J. Mol. Liq. 147, 162 (2009)CrossRefGoogle Scholar
  10. 10.
    P.P. Bezverkhy, V.G. Martynets, E.V. Matizen, A.B. Kaplun, A.B. Meshalkin, Thermophys. Aeromech. 19, 679 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P.P. Bezverkhii, V.G. Martynets, S.V. Stankus, High Temp. 53, 338 (2015)CrossRefGoogle Scholar
  12. 12.
    P.P. Bezverkhy, V.G. Martynets, High Temp. High Press. 45, 145 (2016)Google Scholar
  13. 13.
    P.P. Bezverkhii, V.G. Martynets, A.B. Kaplun, A.B. Meshalkin, High Temp. 55, 693 (2017)CrossRefGoogle Scholar
  14. 14.
    P.P. Bezverkhii, V.G. Martynets, A.B. Kaplun, A.B. Meshalkin, High Temp. 55, 702 (2017)CrossRefGoogle Scholar
  15. 15.
    A.B. Kaplun, A.B. Meshalkin, J. Chem. Eng. Data 55, 4285 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Kaplun, A. Meshalkin, J. Chem. Eng. Data 56, 1463 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Lee, M.S. Shin, J.-K. Yeo, H. Kim, J. Chem. Thermodyn. 39, 1257 (2007)CrossRefGoogle Scholar
  18. 18.
    A.V. Rykov, I.V. Kudryavtseva, S.V. Rykov, Nauch. Zh. ITMO Univ., Ser.: Kholodiln. Tehn. Konditsionir. (Sci. J. of NIU ITMO Univ., Ser.: Refrigeration equipment and air conditioning, in Russian), vol. 2 (2013). http://www.refrigeration.ihbt.ifmo.ru/789.pdf
  19. 19.
    I.V. Kudryavtseva, A.V. Rykov, V.A. Rykov. Nauch. Zh. ITMO Univ., Ser.: “Processy, apparaty pischevykh proizvodstv” (Processes and apparatus of food industry, in Russian), 2013, №. 3. http://www.processes.ihbt.ifmo.ru
  20. 20.
    P. Nowak, Th Tielkes, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 29, 885 (1997)CrossRefGoogle Scholar
  21. 21.
    V.G. Martynets, E.V. Matizen, Thermophysical properties of substances and materials. GSSSD. Physical constants and properties of substances, Iss. 13. (Standarty, Moscow, 1979), pp. 13–23 [in Russian] Google Scholar
  22. 22.
    H.W. Woolley, Int. J. Thermophys. 4, 51 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    A.B. Kaplun, A.B. Meshalkin, Thermophys. Aeromech. 24, 513 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    V.A. Agayan, M.A. Anisimov, J.V. Sengers, Phys. Rev. E 64, 026125-1 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    J.V. Sengers, J.G. Shanks, J. Stat. Phys. 137, 857 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products) (Fizmatgiz, Moscow, 1962), pp. 962–964Google Scholar
  27. 27.
    A.Z. Patashinskii, V.L. Pokrovskii, Fluctuation theory of phase transitions (Pergamon, Oxford, 1979)Google Scholar
  28. 28.
    L.D. Landau, E.M. Lifshitz, in Course of Theoretical Physics. Statistical physics, Part 1, 3rd edn, vol 5 (Butterworth–Heinemann, Oxford, 1980)Google Scholar
  29. 29.
    L. Beck, G. Ernst, J. Gurtner, J. Chem. Thermodyn. 34, 277 (2002)CrossRefGoogle Scholar
  30. 30.
    I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova, J. Chem. Thermodyn. 26, 1031 (1994)CrossRefGoogle Scholar
  31. 31.
    J.W. Magee, J.F. Ely, Int. J. Thermophys. 7, 1163 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    Kh.I. Amirkhanov, N.G. Polikhronidi, R.G. Batyrova, Teploenergetika 3, 70 (1970)Google Scholar
  33. 33.
    Kh.I. Amirkhanov, N.G. Polikhronidi, B.G. Alibekov, R.G. Batyrova, Teploenergetika 18, 59 (1971)Google Scholar
  34. 34.
    S.L. Rivkin, V.M. Gukov, Teploenergetika 10, 82 (1971)Google Scholar
  35. 35.
    V.A. Gruzdev, V.I. Slabnyak, Issledovanie teplofizicheskikh svoistv veshchectv (Investigation of the thermophysical properties of substances) (Nauka, Novosibirsk, 1970), pp. 150–156. [in Russian] Google Scholar
  36. 36.
    I.I. Novikov, Yu.S. Trelin, Teploenergetika 9, 78 (1962)Google Scholar
  37. 37.
    L.L. Pitaevskaya, A.V. Bilevich, Russ. J. Phys. Chem. 47, 227 (1973)Google Scholar
  38. 38.
    V.V. Altunin, Teplofizicheskie svojstva dvuokisi ugleroda (Thermophysical Properties of Carbon Dioxide) GSSSD. Series: Monographs. (Standarty, Moscow, 1975), p. 303 [in Russian] Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations