Advertisement

Analysis of UV Assisted Phase Transitions in Mixtures of Liquid Crystals with Photochromic Compounds by Photopyroelectric Calorimetry

  • Stefano PaoloniEmail author
  • Fulvio Mercuri
  • Ugo Zammit
ICPPP 20
  • 37 Downloads
Part of the following topical collections:
  1. ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

In this work, an upgraded photopyroelectric setup has been used to investigate phase transitions in liquid crystals dispersed with photochromic molecules. In particular, we have studied the thermal diffusivity before, during, and after the photo-induced conformational changes of the dispersed photochromic molecules. Upon sample irradiation, an opposite shift of the phase transition temperatures were observed in the investigated 8CB–NP and 8CB–7AB mixtures due to the different changes in the shape undergone by the dispersed active molecules.

Keywords

Phase transition Photochromic liquid crystal Photopyroelectric technique 

Notes

Acknowledgements

The authors are grateful to Prof. J. Thoen from the University of Leuven, BE and Dr. T. Kosa from the Alpha Micron, Inc., Kent, Ohio, USA for providing the azo-based and the naphtopyran photochromic molecules, respectively.

References

  1. 1.
    U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, F. Scudieri, Rev. Sci. Instrum. 82, 121101 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    U. Zammit, F. Mercuri, S. Paoloni, M. Marinelli, R. Pizzoferrato, J. Appl. Phys. 117, 105104 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    A. Oleaga, A. Salazar, D. Prabhakaran, J.G. Cheng, J.S. Zhou, Phys. Rev. B. 85, 184425 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A. Herrero, A. Oleaga, P. Manfrinetti, A. Provino, A. Salazar, Intermetallics 101, 64 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Herrero, A. Oleaga, A. Salazarm, A.F. Gubkin, N.V. Baranov, J. Alloys Compd. 741, 1163 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Caerels, C. Glorieux, J. Thoen, Phys. Rev. E 65, 031704 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, F. Scudieri, J. Phys. Chem. B 115, 2331 (2011)CrossRefGoogle Scholar
  8. 8.
    F. Mercuri, S. Paoloni, M. Marinelli, R. Pizzoferrato, U. Zammit, J. Chem. Phys. 138, 074903 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Paoloni, F. Mercuri, U. Zammit, J. Chem. Phys. 145, 124506 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S. Paoloni, F. Mercuri, M. Marinelli, U. Zammit, C. Neamtu, D. Dadarlat, Phys. Rev. E 78, 042701 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Prasad, Angew. Chem. Int. Ed. 51, 10708 (2012)CrossRefGoogle Scholar
  12. 12.
    H.K. Bisoki, Q. Li, Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116(24), 1508915166 (2016)Google Scholar
  13. 13.
    T. Kosa, L. Sukhomilinova, L. Su, B. Taheri, T.J. White, T.J. Bunning, Nature 485, 347 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    B. Zalar, O.D. Lavrentovich, H. Zeng, D. Finotello, Phys. Rev. E 62(2), 2252 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Prasad, G.G. Nair, Adv. Mater. 13, 40 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Soboleweska, J. Zawada, S. Bartkiewicz, Z. Gelwski, J. Phys. Chem. C 117, 10051 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Paoloni, F. Mercuri, M. Marinelli, R. Pizzoferrato, U. Zammit, T. Kosa, L. Sukhomlinova, B. Taheri, J. Chem. Phys. 143, 134901 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    A. Mandelis, F. Care, K.K. Chan, L.C.M. Miranda, Appl. Phys. A 38, 117 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    F. Mercuri, S. Paoloni, N. Orazi, C. Cicero, U. Zammit, Appl. Phys. A 123, 327 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    N. Orazi, F. Mercuri, U. Zammit, S. Paoloni, M. Marinelli, A. Giuffredi, C.S. Salerno, Stud. Conserv. 61, 236 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Mercuri, N. Orazi, U. Zammit, A. Giuffredi, C.S. Salerno, C. Cicero, S. Paoloni, J. Archaeol. Sci.: Rep. 14, 199–207 (2017)Google Scholar
  22. 22.
    M. Pucci, C. Cicero, N. Orazi, F. Mercuri, M. Marinelli, Stud. Conserv. 60, 88–96 (2015)CrossRefGoogle Scholar
  23. 23.
    G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Phys. Rev. E 58, 5966 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    M. Marinelli, F. Mercuri, U. Zammit, F. Scudieri, Phys. Rev. E 58, 5860 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    F. Mercuri, M. Marinelli, S. Paoloni, U. Zammit, F. Scudieri, Appl. Phys. Lett. 92, 251911 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. A 26, 2886 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    S. Paoloni, F. Mercuri, M. Marinelli, R. Pizzoferrato, U. Zammit, Liq. Cryst. 40, 1535 (2013)CrossRefGoogle Scholar
  28. 28.
    T.A. Krentsel, O.D. Lavrentovich, S. Kumar, Mol. Cryst. Liq. Cryst. 304, 463 (1997)CrossRefGoogle Scholar
  29. 29.
    R. Demadrille, M. Campredom, R. Guglielmetti, G. Giusti, Mol. Cryst. Liq. Cryst. 345, 1 (2000)CrossRefGoogle Scholar
  30. 30.
    W.R. Folks, Y.A. Reznikov, L. Chen, A.I. Khizhnyak, O.D. Lavrentovich, Mol. Cryst. Liq. Cryst. 261, 259 (1995)CrossRefGoogle Scholar
  31. 31.
    W.R. Folks, S. Keast, T.A. Krentze, B. Zalar, H. Zeng, Y.A. Reznikov, M. Neubert, S. Kumar, D. Finotello, D. Lavrentovich, Mol. Cryst. Liq. Cryst. 320, 77 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria IndustrialeUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations