Thermal Conductivity of UO2–BeO–Gd2O3 Nuclear Fuel Pellets

  • D. M. CamaranoEmail author
  • F. A. Mansur
  • A. M. M. Santos
  • L. S. Ribeiro
  • A. Santos
Part of the following topical collections:
  1. TEMPMEKO 2019: Selected Papers of the 14th International Symposium on Temperature and Thermal Measurements in Industry and Science


In the present paper, the influence of the beryllium oxide addition to increase the thermal conductivity in uranium dioxide fuel pellets containing gadolinium oxide as burnable poison was investigated. Fuel pellets of UO2, UO2–BeO–Gd2O3, and UO2–Gd2O3 were obtained in concentrations of 2–3 wt % of BeO and 6 wt % of Gd2O3. The thermal diffusivity was determined at room temperature and until 773 K by Laser Flash and Thermal Quadrupole methods, respectively. The thermal diffusivity and thermal conductivity were normalized to 95  % TD (theoretical density). The maximum relative expanded uncertainties of the thermal diffusivity and thermal conductivity measurements were estimated to be 7.5  % and 8.0  %, respectively. In addition, the obtained results were compared with the theoretical models and experimental data given in the literature. The results showed an increase in the thermal diffusivity and conductivity of the UO2 pellets with additions of BeO as compared to the values obtained with UO2 and UO2–Gd2O3 pellets.


Beryllium oxide Gadolinium oxide Laser flash method Nuclear fuel pellets Thermal conductivity Thermal diffusivity Thermal quadrupole method Uranium dioxide 



The authors thank the financial support of Sistema Brasileiro de Tecnologia (Sibratec-Modernit-SisNANO).


  1. 1.
    D.S. Li, H. Garmestani, J. Schwartz, J. Nuc. Mat. 392, 22–27 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Volkov B, Tverberg T and McGrath M 2014 Proc. Water Reactor Fuel Performance Meeting (Sendai) (Paper N. 100141)Google Scholar
  3. 3.
    W. Zhou, R. Liu, S.T. Revankar, Ann. Nuc. Energy 81, 240–248 (2015)CrossRefGoogle Scholar
  4. 4.
    A.A. Kovalishin, V.N. Prosyolkov, V.D. Sidorenko, Y.V. Stogov, Phys. At. Nucl. 77, 1661–1663 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Ishimoto, M. Hirai, K. Ito, Y. Korei, J. Nuc. Sci. Tech. 33, 134–140 (1996)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, H. Sun, H. Wang, X. Pan, T. Li, J. Liu, Y. Zhang, X. Wang, J. Alloys Compd. 646, 626–631 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Staicu, V.V. Rondinella, C.T. Walker, D. Papaioannou, R.J.M. Konings, C. Ronchi, M. Sheindlin, A. Sasahara, T. Sonoda, M. Kinoshita, J. Nuc. Mat. 453, 259–268 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hirai, J. Nuc. Mat. 173, 247–254 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Camarano, F.A. Mansur, A.M.M. Santos, W.B. Ferraz, R.A.N. Ferreira, Int. J. Thermophys. 38, 137 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Mansur F A, Camarano D M, Santos A M M, Ferraz W B, Ribeiro L S, Ferreira R A N, Santos A 2015 Proc. Int. Nuc. Atl. Conf. (São Paulo, BR, 4-9 October 2015) Google Scholar
  11. 11.
    Ribeiro LS et al. 2015 Proc. Int. Nuc. Atl. Conf. (São Paulo, BR, 49 October 2015) Google Scholar
  12. 12.
    American Society for Testing and Materials, ASTM E1461-13: standard test method for thermal diffusivity by the flash method ASTM international. West Conshohocken (2013). CrossRefGoogle Scholar
  13. 13.
    A. Degiovanni, D. Maillet, S. André, J.C. Batsale, C. Moyne, Thermal quadrupoles: Solving the heat equation through integral transforms (Wiley, London, 2000)zbMATHGoogle Scholar
  14. 14.
    JCGM Evaluation of measurement dataGuide to the Expression of Uncertainty in Measurement, JCGM 100:2008 (Joint Committee for Guides in Metrology, 2008)Google Scholar
  15. 15.
    S.M. Ho, K.C. Radford, Nuc. Technol. 73, 350–360 (1985)CrossRefGoogle Scholar
  16. 16.
    International Atomic Energy Agency, Advances in fuel pellet technology for improved performance at high burnup 1996. (IAEA TEC-DOC 1036).
  17. 17.
    Ferreira R A N, Lopes J A M 2007 Proc. Int. Nuc. Atl. Conf. (Santos, BR, 30 September to 5 October) Google Scholar
  18. 18.
    American Society for Testing and Materials 2017 ASTM B962: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, West Conshohocken, PA DOI:
  19. 19.
    NPL, in Test Report number 2018080343, 2018, National Physical Laboratory, Pyroceram 9606 sampleGoogle Scholar
  20. 20.
    International Atomic Energy Agency, Thermo-physical Materials Properties Database. (IAEA-THERPRO).
  21. 21.
    International Atomic Energy Agency, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data 2008 (IAEA-THPH).
  22. 22.
    R.V. Krishnan, G. Panneerselvam, P. Manikandan, M.P. Antony, K. Nagarajan, J. Nuc. Radiochem. Sci. 10, 19–26 (2009)Google Scholar
  23. 23.
    International Atomic Energy Agency, Characteristics and Use of Urania-Gadolinia Fuels 1995.(IAEA IAEA-TECDOC-844) p. 219
  24. 24.
    Dorr, W and Assmann, H 1979 Proc. 4 th Int. Meeting on Modern Ceramics Tech. (Saint Vicent, IT, 20–31 May)Google Scholar
  25. 25.
    B. Palanki, J. Mat. Sci. Chem. Eng. 4, 8–21 (2016)Google Scholar
  26. 26.
    S. Fukushima, T. Ohmichi, A. Maeda, H. Watanabe, J. Nuc. Mat. 105, 201–210 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    C. Ronchi, M. Sheindlin, M. Musela, G.J. Hyland, J. Appl. Phys. 85, 776–789 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    M. Hirai, S. Ishimoto, J. Nuc. Sci. Tech. 28, 995–1000 (1991)CrossRefGoogle Scholar
  29. 29.
    International Atomic Energy Agency, Thermophysical Properties Database of materials for light water reactors and heavy water reactor 2006. (IAEA-TECDOC-1496).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. M. Camarano
    • 1
    Email author
  • F. A. Mansur
    • 1
  • A. M. M. Santos
    • 1
  • L. S. Ribeiro
    • 1
  • A. Santos
    • 1
  1. 1.Structural Integrity and Nuclear Materials ServiceCentro de Desenvolvimento da Tecnologia Nuclear, CDTNBelo HorizonteBrazil

Personalised recommendations